
powerGate

coolOrange s.r.l

Mar 20, 2024

POWERGATE

1 Installation 1
1.1 Requirements . 1
1.2 Setup . 1
1.3 After the Setup . 2
1.4 Install Locations . 2
1.5 Updates . 2
1.6 Uninstall . 3

2 Activation and Trial limitations 5
2.1 Trial limitations . 5
2.2 Activation . 5
2.3 License Information . 5
2.4 Command-line . 6
2.5 Licensing Options . 6

3 Getting Started 7
3.1 Using the powerGate Cmdlets . 7
3.2 Using the powerGate .NET library . 9
3.3 Demo ERP system . 11
3.4 View ERP data in tabs . 12
3.5 Transfer ERP data manually with tabs . 13

4 Connecting Autodesk & ERP 15
4.1 Sample.ConnectToERP . 15
4.2 Sample.Tab-File-ErpBom . 16
4.3 Sample.Tab-File-ErpItem . 19
4.4 Sample.Tab-Item-ErpBom . 21
4.5 Sample.Tab-Item-ErpItem . 24
4.6 ERP integrations . 27
4.7 Errors . 30

5 BOM Window 35
5.1 Customization . 35
5.2 Status . 38
5.3 BOM Tab . 39
5.4 Item Tab . 40
5.5 Errors . 41

6 Code Reference 43
6.1 Cmdlets . 43
6.2 .NET Library . 105

i

6.3 UI Components . 146

7 Logging 151
7.1 Log requests and responses . 151
7.2 LogFile . 153
7.3 PowerShell IDE . 153

8 Change logs 155
8.1 powerGate v24 . 155
8.2 powerGate v23 . 161
8.3 powerGate v22 . 165
8.4 powerGate v21 . 166
8.5 powerGate v20 . 169
8.6 powerGate v19 . 171
8.7 powerGate v18 . 175
8.8 powerGate v17 . 176
8.9 powerGate 2016 . 183

9 Features 185
9.1 Pull and Transfer material information . 185
9.2 Pull project information . 186
9.3 Transfer BOM to the ERP system . 186

ii

CHAPTER

ONE

INSTALLATION

1.1 Requirements

As powerGate allows to automate data synchronization between Vault and ERP systems, the Vault system requirements
defined by Autodesk leads.

Operating System: 64-bit only

• Microsoft Windows 10

• Microsoft Windows 11

.NET Framework: 4.7 or higher

Windows PowerShell: PowerShell 4.0 or higher

1.1.1 Workstations

Autodesk Vault Client: 2024 / 2023 / 2022 / 2021

• Vault Professional

coolOrange powerJobs Client: powerJobs Client is installed automatically (optional)

• powerEvents is needed to easily realize integrations between Vault Client, Inventor and the ERP system (see ERP
integration sample).

1.1.2 Job Processor

coolOrange powerJobs Processor: powerJobs Processor (optional)

• Needed to perform automated data synchronization tasks between Vault and ERP via the Job Processor.

1.2 Setup

The powerGate setup is delivered as an executable and accepts the standard windows installer arguments.
To accept the products EULA when starting the setup in silent mode pass the ACCEPT_EULA=1 argument.
This installs all components needed on a workstation by default:

"\\path\to\networklocation\powerGate24.0_Vault2024.exe" -silent ACCEPT_EULA=1

1

https://www.autodesk.com/support/technical/article/caas/sfdcarticles/sfdcarticles/System-requirements-for-Autodesk-Vault-products.html
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-5.1
https://doc.coolorange.com/projects/powerjobsclient/en/stable/
https://doc.coolorange.com/projects/powerevents/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/
https://docs.microsoft.com/en-us/windows/desktop/Msi/command-line-options

powerGate

To install only the main components (Cmdlets and .NET Library) on the Job Processor machine, pass the
MAIN_COMPONENTS_ONLY=1 argument.
This will NOT install any sample files and no powerJobs Client:

"\\path\to\networklocation\powerGate24.0_Vault2024.exe" -silent ACCEPT_EULA=1 MAIN_
→˓COMPONENTS_ONLY=1

1.3 After the Setup

After installing powerGate on a development environment, the provided sample files can be used to implement your
own Vault ERP integration.
It is recommended to disable all PowerShell scripts that are not used and have been replaced with your own version.

1.4 Install Locations

powerGate is installed in the following locations on your system:

• The Cmdlets will be installed to C:\Program Files\coolOrange\Modules\powerGate

• All PowerShell scripts and XAML files relevant for the ERP integration are placed in
C:\ProgramData\coolOrange\Client Customizations (only on workstations)

Following shared libraries are installed in GAC:

• powerGate.Erp.Client.dll

• coolOrange.Logging.dll

Following shortcuts are added in the start menu:

• powerGate Console - Opens the PowerShell Console and loads the powerGate module

• powerGate Information - Opens the About dialog with product related information

• powerGate License Information - Opens the License Information dialog to activate the product

• powerGate Logs - Opens the log file location

1.5 Updates

To install a newer version of powerGate on workstations, just execute the setup file of the new version.
ERP integrations will then continue to work as usual, with all delivered sample files also beeing updated (see
C:\ProgramData\coolOrange\Client Customizations\Disabled folder).
Improvements in these files will automatically take effect only for those PowerShell scripts that were also previously
enabled.

Note: On the Job Processor, Vault Workgroup (unsupported) and Vault 2020 or older environments, powerGate must
be updated with the previously used MAIN_COMPONENTS_ONLY=1 argument.

Please note that for such installations that contain only the main components (Cmdlets and .NET Library), future updates
can also be performed only with this argument!
Otherwise the update will be prevented by the installer. A full installation on workstations is then unfortunately only
possible by uninstalling the old version before installing the new one.

2 Chapter 1. Installation

https://doc.coolorange.com/projects/powerjobsclient/en/stable/
https://doc.coolorange.com/projects/licensing/en/stable/license_information/
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/#enable-or-disable-scripts

powerGate

1.6 Uninstall

In case you want to remove powerGate from your computer you can:

• Execute the setup file again. This will give you the option to repair or remove powerGate. Click on “Remove”
to uninstall the program.

• Go to “Control Panel - Programs and Features”, find “coolOrange powerGate” and run “Uninstall”.

1.6. Uninstall 3

powerGate

4 Chapter 1. Installation

CHAPTER

TWO

ACTIVATION AND TRIAL LIMITATIONS

2.1 Trial limitations

There is no difference in functionality between the trial version and the fully licensed product.
After the installation the product is available as a trial version for 30 days.
During this time, the sample Vault ERP Integration can also be tested against our Demo ERP and all your test data will
be retained.

2.2 Activation

The product can be activated during or after the trial period.
For manually activating the product following Dialog can be used:

2.3 License Information

Open the Start Menu and navigate to “All Apps → coolOrange → powerGate 24.0 License Information” shortcut.

5

powerGate

2.4 Command-line

Launch the License Information tool located in the install directory with the required Command-line arguments.
Example: Activating a Stand-Alone license using a serial number:

1 "C:\Program Files\coolOrange\Modules\powerGate\License.exe" --StandAlone --Serialnumber=
→˓"XXXXX-XXXXX-XXXXX-XXXXX"

For more information about activating the product, see Licensing.

2.5 Licensing Options

2.5.1 Stand Alone Licensing

This product supports the Stand-Alone licensing model which is charged based on the time the license is valid and the
number of seats the license is valid for.
For further information see the detailed description of the Stand-Alone licensing model.
In the License Information Dialog the remaining days until the license expires can be found.

License expired

When the license expires, powerGate will show a windows notification and the ERP Integration notifies about the li-
cense error within the Connection Error Dialog, BOM Window Error statuses and powerEvents restrictions.
The Connect-ERP cmdlet and the IErpClient.ConnectErp function throw a LicenseException when attempting to con-
nect to an OData server.
Any subsequently executed ERP cmdlets or .NET Library functions will fail and prevent the user and configured au-
tomatisms from working with the ERP.

This also applies if the OData service is a powerGateServer.
In this case, all Vault workstations will be informed about the expired powerGateServer license.

2.5.2 Offline activation

The serial number of the license and the machine code are required to generate an activation file.
The activation file for an offline activation can be generated and downloaded on the following site: powerGate - Acti-
vation file generator

6 Chapter 2. Activation and Trial limitations

https://doc.coolorange.com/projects/licensing/en/stable/license_activation/#activating-via-command-line
https://doc.coolorange.com/projects/licensing/en/stable/licensingmodels/#standalone
https://doc.coolorange.com/projects/licensing/en/stable/license_activation/
https://doc.coolorange.com/projects/licensing/en/stable/licensingmodels/#standalone
https://doc.coolorange.com/projects/licensing/en/stable/license_information/
https://doc.coolorange.com/projects/powergateserver/en/stable/
https://doc.coolorange.com/projects/licensing/en/stable/license_information/
https://doc.coolorange.com/projects/licensing/en/stable/license_activation/#offline-activation
https://app.cryptolens.io/Form/A/es0zlCsF/364
https://app.cryptolens.io/Form/A/es0zlCsF/364

CHAPTER

THREE

GETTING STARTED

3.1 Using the powerGate Cmdlets

3.1.1 Start the PowerShell environment

In order to get started either open any PowerShell IDE and load the powerGate Module by calling Import-Module
powerGate or open the powerGate Console shortcut in the start menu, which already loads powerGate for you.

3.1.2 Connect with ERP system

Before you are able to work with your ERP-System you have to connect to powerGateServer or directly your ERP
system (if it support’s an OData interface).
This can be done by calling Connect-Erp.

Some public accessible OData-Services for testing can be found here.

7

https://doc.coolorange.com/projects/powergateserver/en/stable/installation/
http://www.odata.org/odata-services/

powerGate

3.1.3 Get multiple entities from ERP

After you are connected, you want to work with entities. In order to get the entities you have to know the appropriate
EntitySet.
The list of available EntitySet’s can be retrieved with the Get-ERPEntitySets Cmdlet.

Note: If you want to get the names of the EntitySet’s you can access them via $entitySet.Name

Now you know the name of the different entitiyTypes, therefore you can finally get some entities with Cmdlet Get-
ErpObjects.

Note: Get-ErpObjects has many optional parameters like -Top -Filter -Expand. See detailed documentation for
them.

3.1.4 Get a specific entity from ERP

In order to get a specific entity you have to know their key properties which identifies them.
The metadata information for the key properties of the entity can be retrieved using following:

1 $itemsEntityType = Get-ERPEntityTypes -EntitySet $entitySet.Name
2 $keyProperties = $itemsEntityType.Keys

First set up the keys for your entity as a Hashtable:

1 $keys = @{ 'Number'='100001' }

Execute Get-ErpObject with the mandatory arguments EntitySet and Keys.

1 $entity = Get-ERPObject -EntitySet $entitySet.Name -Keys $keys

3.1.5 Update an existing entity

In case you want to change some values of the entity you can achieve this with the Update-ErpObject Cmdlet.
First setup a Hashtable, with the values you want to update.

Note: Key properties can NOT be modified!

1 $updatedProperties = @{ 'Material'='uranium'; 'UnitOfMeasure'='Bq' }

Execute the Cmdlet with the entity-keys and properties and it returns the updated entity.

1 $updatedEntity = Update-ERPObject -EntitySet $entitySet.Name -Keys $keys -Properties
→˓$updatedProperties

8 Chapter 3. Getting Started

powerGate

3.1.6 Add an entity to ERP

The New-ERPObject cmdlet allows you to create a new and empty instance of the required EntityType and pre-fill it
with data that can be passed to the Add-ERPObject to create a new entity in ERP.

1 $newEntityProperties = New-ERPObject -EntityType $itemsEntityType.Name -Properties @{
→˓'Number'='100002'; 'Material'='Einsteinium'; 'UnitOfMeasure' = "Bq"}

2 Add-ERPObject -EntitySet $entitySet.Name -Properties $newEntityProperties

3.1.7 Upload file to ERP

You may want to attach/link a Pdf file to an entity. This operation is called Add-ErpMedia.
It will create the entity on the server side and upload and link the file with the newly created entity.

3.2 Using the powerGate .NET library

3.2.1 Follow these steps to use the powerGate library in your C# project

With the installation of powerGate on your development machine, the required .NET library will be installed for all
users.
It contains the relevant API’s to communicate with an ERP System via OData.

The powerGate .NET library requires your project to target at least .NET framework v4.7!

1. Reference the powerGate.Erp.Client assembly

In Visual Studio right-click on References and click “Add References”.
Search for the assembly “powerGate.Erp.Client” in Assemblies-tab and add it to your project.

3.2. Using the powerGate .NET library 9

powerGate

The assembly will be referenced from the GAC, therefore set “Copy Local” to “false” (when using Visual Studio 2017
this should be done automatically).

2. Create an ErpClient instance and connect to a service

In order to gain access to the powerGate API’s, the following namespace must be imported:

using powerGate.Erp.Client;

Root entry point is the class ErpClient:

var client = new ErpClient();

Call the ConnectErp() method in order to have access to the prefered Service:

var northwindService = client.ConnectErp(new Uri("http://services.odata.org/V4/Northwind/
→˓Northwind.svc/"));

3. Communicate with the service

If we have successfully connected to a Service (service.Available will return true), then we are able to make CRUD
operations on the prefered EntitySet.

See the following example with a single get, which retrieves exactly one entry:

var categories = client.Services["Northwind.svc"].EntitySets["Categories"];
var categoryKeys = new Dictionary<string,object> { {"CategoryID", 3} };
var category = categories.GetErpObject(categoryKeys);
Console.WriteLine("Successful retrieved category '{0}' with Id '{1}'.",
category["CategoryName"], (int)category["CategoryID"]);

4. Release the service when done

When you are done working with your ERP System, the ErpClient should be disposed, in order to disconnect from all
the connected services and release all the resources.

client.Dispose();

We recommend using the “using” statement on the ErpClient, so Dispose() will be called in each situation, also when
unexpected exceptions are thrown!

Install powerGate on customer machine

When shipping your projects binaries to your customer, also the customers machine requires a powerGate installa-
tion.
Therefore delivering the powerGate.Erp.Client assembly within your project should be avoided, in order to not lose
the benefits from powerGates Update strategy.

See the complete example:

10 Chapter 3. Getting Started

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

powerGate

using System;
using System.Collections.Generic;
using powerGate.Erp.Client;

namespace HelloWorldServices
{

class Program
{

static void Main(string[] args)
{

using (var client = new ErpClient())
{

var northwindService = client.ConnectErp(new Uri("http://services.odata.
→˓org/V4/Northwind/Northwind.svc/"));

var categories = client.Services["Northwind.svc"].EntitySets["Categories
→˓"];

var categoryKeys = new Dictionary<string, object>{ {"CategoryID", 3} };
var category = categories.GetErpObject(categoryKeys);

Console.WriteLine("Successful retrieved category '{0}' with Id '{1}'.",␣
→˓category["CategoryName"], (int)category["CategoryID"]);

}

Console.ReadLine();
}

}
}

3.3 Demo ERP system

For evaluation and demo purposes public web services are used by the delivered sample Vault ERP Integration,
where all Vault users that are connected to the same Vault on the same Vault Server (ADMS) share the same test
data.

Testdata will be removed

As this ERP system should only be used for demo and testing purposes, the stored data will be be removed after about
30 days.

The following OData service is based on the powerGateServer ERP plugin and are publicly accessible:

• DemoService - http://demo.powergate.online/PGS/ERP/DemoService

Requirement

The following domain needs to be accessible on TCP port 80 ‘demo.powergate.online’

3.3. Demo ERP system 11

https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#erp

powerGate

3.3.1 Testing

This demo system can be used to try out the sample Vault ERP Integrations, the .NET Library or the Cmdlets:

1. Open the powerGate Console shortcut

2. Connect to the Vault for which you want to start a new test session:

Import-Module powerVault
Open-VaultConnection -Server '<Your Vault Server>' -Vault '<Your Vault name>' -User
→˓'Guest' ...

3. Connect to the Demo ERP system using the provided $demoErpConnect variable, which enables a new test
session for your Vault:

Connect-ERP -Service 'http://demo.powergate.online/PGS/ERP/DemoService' -OnConnect
→˓$global:demoERPconnect

4. Retrieve the available entity sets:

Get-ERPEntitySets
<#
Service Name EntityType
------- ---- ----------
http://demo.powergate.online/PGS/ERP/DemoService Items Item
http://demo.powergate.online/PGS/ERP/DemoService BomRows BomRow
http://demo.powergate.online/PGS/ERP/DemoService BomHeaders BomHeader
#>

If you are new to powerGate, topics in this section will help you quickly start getting the best of the product:

• Using the Cmdlets

• Using the .NET library

For evaluation purposes, working samples of ERP tabs are delivered, which connect to a public Demo ERP system.
All you need to try it out is an internet connection. Also, no special Vault permissions are necessary as the tabs
themselves do not change any data in your production Vault.
For 30 days, your test data will remain secured in our Demo ERP just for you and for other employees who also log
into your Vault.

3.4 View ERP data in tabs

Open the Vault Client and login to your Vault. Afterwards select an Inventor file within the Vault Client.

Activate the tab “ERP Item”, which automatically connects to the Demo ERP system and displays the current data for
this file.
As its used for the first time currently no item exists for the selected file in the Demo ERP system.

You can now click on the “Create new ERP Item. . .” button which opens a dialog with pre-filled data from the file and
the supplied default configuration:

12 Chapter 3. Getting Started

powerGate

Similarly, also the additional “ERP BOM” tab indicates that no BOM exists in the ERP system for the selected file.

3.5 Transfer ERP data manually with tabs

After you have entered all the required data, click on the “Submit” button to create a new item in the ERP system.
If the creation is successful, the tab displays the data of the new ERP Item.

3.5. Transfer ERP data manually with tabs 13

powerGate

The ERP Item can be changed simply by clicking the “Change ERP Item. . .” button, which opens a dialog for modifiying
the data.

Similarly, the “ERP BOM” tab provides access to the BOM Window for the current selection. It allows to view, create
and update the BOM and the items of the BOM in the ERP system.

Note: The two previously mentioned tabs are by default also available for Vault items and can be accessed by selecting
an item in the Item Master view.

14 Chapter 3. Getting Started

CHAPTER

FOUR

CONNECTING AUTODESK & ERP

4.1 Sample.ConnectToERP

This client customization shows how to automatically connect to all configured ERP Services when Vault users log into
Vault from within the Vault Client or Inventor.
It adds a menu item in the Tools menu of the Vault Client to open the ERP Integration Settings dialog, where these
connection settings can be viewed and changed.

Evaluating sample ERP features is possible out-of-the-box. No manual configuration in the Vault is required for this,
as our public Demo ERP system is used by default.

4.1.1 Modifications

To modify this script to your needs, it is recommended to create a copy of the sample script, customize it accordingly
and then disable this sample script.

The sample script registers to the LoginVault_Post event and tries to connect to all configured ERP services using
Connect-ERP -UseSettingsFromVault.
But also after saving changes in the ERP Integration Settings dialog, this cmdlet is invoked again.

The following script section can be adapter if connections to these services might not be supported by default or
additional connection procedures are required:

1 function ConnectToConfiguredERPServices(){
2 Disconnect-ERP
3

4 # multiple SAP Gateway services are configured as 'Direct connection to an OData-
→˓capable ERP'

5 Connect-ERP -UseSettingsFromVault -OnConnect {
6 param($settings)
7

8 $settings.Credentials = New-Object System.Net.NetworkCredential('EX_DEMO', 'secret
→˓')

9

10 if($settings.Service.EndsWith('/sap/opu/odata/arcona6/MATERIAL_SRV')) {
11 $global:sapConnect.Invoke($settings)
12

13 # Other custom -OnConnect logic ...
14 }elseif(...){ ... }
15 }
16 }

15

https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/objects/event_mappings/connection_events/loginvault/

powerGate

4.1.2 Disabling the script

After the installation on new environments this script is enabled by default for the Vault Client and Inventor.
To globally disable this client customization, move the script file to the %PROGRAMDATA%\coolOrange\Client Cus-
tomizations\Disabled directory.

Note: Please note that after updates from v23.0.10 and older, this script is automatically disabled and installed in the
%PROGRAMDATA%\coolOrange\Client Customizations\Disabled directory.
Scripting guys can then enable and review this customization in a test environment before deploying the script in
production ERP integrations.

4.2 Sample.Tab-File-ErpBom

The “ERP BOM” tab from this sample script allows the designer to select a file in the Vault Client and immediately
see if a BOM already exists in the ERP system.
If it does, all the position numbers, item numbers, quantities, and other relevant BOM row details are displayed live
from the ERP system.
With the BOM Window it is possible to automatically generate and update all required materials and BOMs in the ERP
system.

Requirements

This Vault Client customization is designed to be used with the “DemoService” from the Demo ERP system:

• An internet connection is required and the domain ‘demo.powergate.online’ needs to be accessible on TCP port
80.

• An entity set named “BomHeaders” is expected as well as the entityset “BomRows” and “Items”

• Vault files are uniquely assigned to an ERP BOM via their item number stored in the Vault property “Part
Number” and the ERP field “ParentNumber”.

• Individual BOM rows are also identified by the item number, but their position in the CAD BOM and the ERP
BOM “Position” must also match.

This tab can also be activated at any time when you are already using your own ERP integration.

In the ERP Integration Settings dialog, it is possible to specify from which Vault Properties (or fixed-values) the data
of created Items comes from (see type-mapping Vault ‘File’ -> ERP ‘Item’).
Additionally, also the possible values for the ERP field “UnitOfMeasure” are retrieved from this configuration (see
ERP field ‘UnitOfMeasure’ -> list values).

4.2.1 Testing

The script can be tested by doing the following steps on your test-environment:

1. Open the Vault Client and log in to your Vault.

2. Navigate to a file and select it.

3. Click on the tab with the name “ERP BOM”.

16 Chapter 4. Connecting Autodesk & ERP

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script
https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

4. Since no BOM with the “Part Number” of the selected file exists in the Demo ERP system, a new one can be
created.

5. Click on “Create new ERP BOM. . . ”. The BOM Window opens and the complete CAD-BOM is displayed.

6. Use the respective Check- and Transfer buttons in the “Items” tab to first create or update all the required Items
in ERP.

7. Click the Check- and Transfer buttons in the “BOM” tab.

4.2. Sample.Tab-File-ErpBom 17

powerGate

The BOMs have now been successfully generated in the ERP system and the BOM Window can be closed.

8. The position number, item number, quantity, and other relevant information are displayed for all rows in the
newly created ERP BOM:

18 Chapter 4. Connecting Autodesk & ERP

powerGate

4.2.2 Disabling the script

After the installation on new environments, this script by default enables the Vault “ERP BOM” tab for files.
If you work exclusively with Vault Items, or if you do not use this tab, the file %PROGRAMDATA%\coolOrange\Client
Customizations\Sample.Tab-File-ErpBom.ps1 can be moved to the directory %PROGRAMDATA%\coolOrange\Client
Customizations\Disabled.

Note: Please note that after updates from v23.0.4 and older, this script is automatically disabled and installed in the
%PROGRAMDATA%\coolOrange\Client Customizations\Disabled directory.
Scripting guys can then enable and review the “ERP BOM“ tab in a test environment before deploying their own version
of the script in production ERP integrations.

4.3 Sample.Tab-File-ErpItem

During the design process, it is crucial for the engineer to access material information from the ERP system.

Using the “ERP Item” tab from this sample script, the designer can select a file in the Vault Client and view the item
number and other relevant information live from the ERP system.
If desired, the displayed ERP data can also be modified directly via this tab.
If no item exists yet, all necessary information for the creation of a new ERP Item can be entered manually to create it
in the ERP system afterwards.

Requirements

This Vault Client customization is designed to be used with the “DemoService” from the Demo ERP system:

• An internet connection is required and the domain ‘demo.powergate.online’ needs to be accessible on TCP port
80.

• An entity set named “Items” is expected

• Vault files are uniquely assigned to an ERP item via their item number stored in the Vault property “Part Num-
ber” and the ERP field “Number”.

This tab can also be activated at any time when you are already using your own ERP integration.

In the ERP Integration Settings dialog, it is possible to specify from which Vault Properties (or fixed-values) the data
of new Items comes from (see type-mapping Vault ‘File’ -> ERP ‘Item’).
Additionally, also the values for the “Unit of Measure” selection list are retrieved from this configuration (see ERP
field ‘UnitOfMeasure’ -> list values).

4.3.1 Testing

The script can be tested by doing the following steps on your test-environment:

1. Open the Vault Client and log in to your Vault.

2. Navigate to a file and select it.

3. Click on the tab with the name “ERP Item”.

4. Since no item with the “Part Number” of the selected file exists in the Demo ERP system, a new one can be
created.

4.3. Sample.Tab-File-ErpItem 19

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

5. Click on “Create new ERP Item. . . ” which opens a Dialog with pre-filled data.

6. Press Submit and a new ERP Item gets created in the ERP system. Its item number and other metadata are
displayed:

20 Chapter 4. Connecting Autodesk & ERP

powerGate

This information can also be changed after clicking on “Change ERP Item. . .”.

4.3.2 Disabling the script

After the installation on new environments, this script by default enables the Vault “ERP Item” tab for files.
If you work exclusively with Vault Items, or if you do not use this tab, the file %PROGRAMDATA%\coolOrange\Client
Customizations\Sample.Tab-File-ErpItem.ps1 can be moved to the directory %PROGRAMDATA%\coolOrange\Client
Customizations\Disabled.

Note: Please note that after updates from v23.0.4 and older, this script is automatically disabled and installed in the
%PROGRAMDATA%\coolOrange\Client Customizations\Disabled directory.
Scripting guys can then enable and review the “ERP Item” tab in a test environment before deploying their own version
of the script in production ERP integrations.

4.4 Sample.Tab-Item-ErpBom

The “ERP BOM” tab from this sample script allows the designer to select an item in the Vault Client and immediately
see if a BOM already exists in the ERP system.
If it does, all the position numbers, item numbers, quantities, and other relevant BOM row details are displayed live
from the ERP system.
Using the BOM Window it is possible to automatically generate and update all required materials and BOMs in the
ERP system.

Requirements

This Vault Client customization is designed to be used with the “DemoService” from the Demo ERP system:

• An internet connection is required and the domain ‘demo.powergate.online’ needs to be accessible on TCP port
80.

• An entity set named “BomHeaders” is expected as well as the entityset “BomRows” and “Items”

• Vault items are uniquely assigned to an ERP BOM via their item number stored in the Vault property “Number”
and the ERP field “ParentNumber”.

• Individual BOM rows are also identified by the item number, but their position number in the Vault BOM and
the ERP BOM “Position” must also match.

This tab can also be activated at any time when you are already using your own ERP integration.

In the ERP Integration Settings dialog, it is possible to specify from which Vault Properties (or fixed-values) the data
of created Items comes from (see type-mapping Vault ‘Item’ -> ERP ‘Item’).
Additionally, also the possible values for the ERP field “UnitOfMeasure” are retrieved from this configuration (see
ERP field ‘UnitOfMeasure’ -> list values).

4.4. Sample.Tab-Item-ErpBom 21

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

4.4.1 Testing

The script can be tested by doing the following steps on your test-environment:

1. Open the Vault Client and log in to your Vault.

2. Navigate to an item in the Item Master view and select it.

3. Click on the tab with the name “ERP BOM”.

4. Since no BOM with the “Number” of the selected item exists in the Demo ERP system, a new one can be created.

5. Click on “Create new ERP BOM. . . ”. The BOM Window opens and the complete Vault BOM is displayed.

6. Use the respective Check- and Transfer buttons in the “Items” tab to first create or update all the required Items
in ERP.

22 Chapter 4. Connecting Autodesk & ERP

powerGate

7. Click the Check- and Transfer buttons in the “BOM” tab.

The BOMs have now been successfully generated in the ERP system and the BOM Window can be closed.

8. The position number, item number, quantity, and other relevant information are displayed for all rows in the
newly created ERP BOM.

4.4. Sample.Tab-Item-ErpBom 23

powerGate

4.4.2 Disabling the script

After the installation on new environments, this script by default enables the Vault “ERP BOM” tab for items.
If you work exclusively with Vault files, or if you do not use this tab, the file %PROGRAMDATA%\coolOrange\Client
Customizations\Sample.Tab-Item-ErpBom.ps1 can be moved to the directory %PROGRAMDATA%\coolOrange\Client
Customizations\Disabled.

Note: Please note that after updates from v23.0.4 and older, this script is automatically disabled and installed in the
%PROGRAMDATA%\coolOrange\Client Customizations\Disabled directory.
Scripting guys can then enable and review the “ERP BOM“ tab in a test environment before deploying their own version
of the script in production ERP integrations.

4.5 Sample.Tab-Item-ErpItem

During the design process, it is crucial for the engineer to access material information from the ERP system.
Using the “ERP Item” tab from this sample script, the designer can select an item in the Vault Client and view the item
number and other relevant information live from the ERP system.

Requirements

This Vault Client customization is designed to be used with the “DemoService” from the Demo ERP system:

• An internet connection is required and the domain ‘demo.powergate.online’ needs to be accessible on TCP port
80.

• An entity set named “Items” is expected

• Vault items are uniquely assigned to an ERP item via their item number stored in the Vault property “Number”
and the ERP field “Number”.

This tab can also be activated at any time when you are already using your own ERP integration.

In the ERP Integration Settings dialog, it is possible to specify from which Vault Properties (or fixed-values) the data
of new Items comes from (see type-mapping Vault ‘Item’ -> ERP ‘Item’).
Additionally, also the values for the “Unit of Measure” selection list are retrieved from this configuration (see ERP
field ‘UnitOfMeasure’ -> list values).

4.5.1 Testing

The script can be tested by doing the following steps on your test-environment:

1. Open the Vault Client and log in to your Vault.

2. Navigate to an item in the Item Master view and select it.

3. Click on the tab with the name “ERP Item”.

4. Since no item with the “Number” of the selected item exists in the Demo ERP system, a new one can be created.

5. Click on “Create new ERP Item. . . ” which opens a Dialog with pre-filled data.

24 Chapter 4. Connecting Autodesk & ERP

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

6. Press Submit and a new ERP Item gets created in the ERP system. Its item number and other metadata are
displayed:

4.5. Sample.Tab-Item-ErpItem 25

powerGate

This information can also be changed after clicking on “Change ERP Item. . .”.

4.5.2 Disabling the script

After the installation on new environments, this script by default enables the Vault “ERP Item” tab for items.
If you work exclusively with Vault files, or if you do not use this tab, the file %PROGRAMDATA%\coolOrange\Client
Customizations\Sample.Tab-Item-ErpItem can be moved to the directory %PROGRAMDATA%\coolOrange\Client
Customizations\Disabled.

Note: Please note that after updates from v23.0.4 and older, this script is automatically disabled and installed in the
%PROGRAMDATA%\coolOrange\Client Customizations\Disabled directory.
Scripting guys can then enable and review the “ERP Item” tab in a test environment before deploying their own version
of the script in production ERP integrations.

26 Chapter 4. Connecting Autodesk & ERP

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

4.6 ERP integrations

Vault Clients, Inventor and AutoCAD applications can be easily connected to ERP systems using the powerGate Cmdlets
or the .NET library.
Depending on whether data synchronizations must be fully automated, partially automated or performed manually, an
ERP integration can be realized using powerEvents, Autodesk Vault Data Standard and additionally with powerJobs
Processor.

4.6.1 Configuration

Vault administrators can configure settings for their entire ERP integration, and these settings are specific to each Vault.

To do this, start the Vault Client and login to the respective Vault.
Afterwards, the “ERP Integration Settings” dialog can be opened in the Tools → powerGate Settings. . . menu (see
Sample.ConnectToERP).

Within the dialog it is possible to configure the necessary Services required for connecting to the ERP system.

For some ERP systems, a single service can be configured that provides all the necessary functionalities for the transfer
of Items and BOMs.
Other ERP systems, such as SAP Gateway, however requires multiple URL endpoints for this purpose.

Connection Types:

• Direct connection to an OData-capable ERP:
ERP systems that provide an OData interface can be directly connected from Vault applications.

4.6. ERP integrations 27

https://doc.coolorange.com/projects/powerevents/en/stable/
https://help.autodesk.com/view/VAULT/2024/ENU/?guid=GUID-D7A81AE0-7CB0-4428-961C-A5E0F8B791D8
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/
https://www.odata.org/

powerGate

• Connection to any ERP via powerGateServer:
Also ERP systems which doesn’t expose a web API can be connected using powerGateServer, who then acts as
a middleman and translator.
New Services can be configured quickly because Host Name, Port and Service paths are proposed based on the
following recommendations.

Recommendations:
If you are using a test-Vault, then the services from local ERP plugins should be configured (they may still be
under development). Please ensure they actually connect to the test-ERP system!
For production Vaults, on the other hand, the powerGateServer should be installed directly on the Vault Server
machine.

Note that powerGateServer installations include an ERP Plugin by default, but it’s not needed for real ERP
integrations; thus, install the powerGateServer without ‘ERP Plugin’ on test and productive environments!
Then, a single CatalogService connection can be configured, allowing workstations to automatically connect to
all installed services, regardless of their names.

Otherwise, please configure the individual services separately to avoid name-conflicts with the services of the
ERP Plugin.

Additionally, the dialog provides the option to configure mappings between Vault and ERP entity types.
Each mapping allows you to specify, for each ERP field, whether data from Vault properties or fixed-values should to
be transferred.

Once settings are changed, the changes can be saved across the entire Vault by clicking the Save button.

Requirements

In order to change settings, the logged-in Vault user must have the respective permissions to edit the $/power-
Gate.settings file.
Otherwise, the Save button is disabled and the status bar of the dialog provides according information.

When applying the same configuration to other Vaults, be sure to check all settings (e.g. Service URLs) for correctness.

28 Chapter 4. Connecting Autodesk & ERP

https://doc.coolorange.com/projects/powergateserver/en/stable/
https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#erp
https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#erp

powerGate

Potential errors must then be resolved, especially if a Vault Property or an ERP Field is missing (perhaps it has been
renamed), or when mapped value types suddenly no longer match.

4.6.2 Scripts

Several PowerShell scripts are delivered with the product, all starting with the name ‘Sample.’.
Their purpose is mainly to help getting started with implementing a new ERP integration for the Vault Client and
Inventor.

For this purpose, powerEvents is used on the workstations to execute the individual Client Customizations in %Pro-
gramData%\coolOrange\Client Customizations:

• Sample.ConnectToERP.ps1

• Sample.Tab-File-ErpItem.ps1 & Sample.Tab-Item-ErpItem.ps1

• Sample.Tab-File-ErpBom.ps1 & Sample.Tab-Item-ErpBom.ps1

These samples cover the most basic scenarios for connecting and exchanging data between Vault and common ERP
systems.

When starting Vault applications and logging into Vault, the Sample.ConnectToERP script automatically connects to
the configured services of the ERP system.
To be able to evaluate the individual functions of our sample ERP integration, our public Demo ERP system is used.

In the Vault Client, additional “ERP Item” and “ERP BOM” tabs are displayed for selected files and items.
For files, the Sample.Tab-File-ErpItem script displays the information of the corresponding ERP Item and the
Sample.Tab-Item-ErpItem script displays the current bill of materials from the ERP.
For items, the Sample.Tab-File-ErpBom and Sample.Tab-Item-ErpBom scripts display the corresponding information
from the ERP system.
In addition, data can also be created or changed live in the ERP system, considering all configurations made.

Since normally either Vault Items or Vault Files are used, the PowerShell scripts that are not needed should be disabled.

The Tabs are delivered with corresponding .xaml files (Extensible Application Markup Language) which describe their
layout, including the controls used (label, text field, combo box, etc.).

Note: For all sample scripts and the according xaml files it is recommended to create a copy when they need to be
modified.
Then disable the particular sample script by simply moving it to the %PROGRAMDATA%\coolOrange\Client Cus-
tomizations\Disabled directory.

4.6. ERP integrations 29

https://doc.coolorange.com/projects/powerevents/en/stable/
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/
https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

4.6.3 Modules

The powerGate_Connections.psm1 module is delivered in the Cmdlets installation directory %Program-
Files%\coolOrange\Modules\powerGate.
It gets automatically imported with the powerGate module and provides global variables and extensions:

• The $sapConnect variable for connecting to SAP systems.

• The $demoErpConnect variable for connecting to the Demo ERP system.

• The $global:Host.PrivateData.OnNonTerminatingError extension ensures that Vault users are notified about
connection problems and can better understand whether the problem is caused by their client-machine, by pow-
erGateServer or directly triggered by the ERP system.

In addition, the powerGate_Configuration.psm1 module provides an $ERPSettings variable and ERP Cmdlet exten-
sions, necessary for working with configurations made for the ERP integration in the current Vault.

Import powerGate module

Before the global variables can be used in -OnConnect of the Connect-ERP, they must be imported using
Import-Module powerGate.
Otherwise it may happen that no successful connection to the ERP system can be established.

4.7 Errors

PowerShell hosting applications inform developers and Vault users in different ways about Terminating Errors that arise
during script or module executions :

• powerEvents displays Error Message Boxes

• BOM Window displays Error Dialogs during Check- and Transfer operations or failure Icons while loading the
BOM tree

• powerJobs Processor jobs fail

• Autodesk Vault Data Standard writes to the Log File and shows Message Boxes in several customization areas

• PowerShell IDE’s display the error message and its stack trace with red text in the terminal when the script
execution stops

Instead, when Non-Terminating Errors occur within Cmdlets, the script execution is not stopped by default (see
-ErrorAction:Continue parameter) and further information is available in the global $Error variable.
Only with ERP integrations, which are loaded as powerEvents Client Customizations, many errors are also managed
automatically and no additional error handling needs to be implemented:

• In applications such as Vault Client, Inventor or AutoCAD, dialogs are displayed that provide information
about the nature of the problem.

For connection problems, these would be WebRequestExceptions occurring in ERP cmdlets, a Connection Error
Dialog is displayed to the Vault user.
This helps to understand whether the problem was caused by the client-machine (no request was send), the
powerGateServer or directly by the ERP system (error response):

30 Chapter 4. Connecting Autodesk & ERP

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/terminating-errors
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/#errors
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/jobprocessor/jobs/#errors
https://help.autodesk.com/view/VAULT/2024/ENU/?guid=GUID-F0F7A520-5765-4FA5-A533-FEDB456B90F8
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/non-terminating-errors
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/

powerGate

Other types of Non-Terminating Errors are incorrectly used ERP cmdlets or problematic parameters where no
web requests are sent at all.
In this case, the developer can see all the details of the exception in an Error Message Box, which helps him to
quickly identify the erroneous line:

• Such modal error dialogs are not displayed in the BOM Window when problems with ERP cmdlets occur during
Check- or Transfer functions.
Instead, the current processed $bom, $bomRow and $item objects are automatically assigned with an Error Status:

4.7. Errors 31

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/non-terminating-errors
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/#errors

powerGate

The automatically set _StatusDetails help the Vault user to localize the cause of connection problems more
precisely.
Unfortunately the operations are not automatically terminated after problematic ERP cmdlet usages or incorrect
parameter values, but also in this case additional stack trace information allows the scripting guy to find the
problematic line faster.

• All Vault Restriction events that encounter ERP cmdlet errors are automatically restricted to prevent the con-
figured process from passing successfully, after connection or cmdlet problems have occurred:

Unfortunately, the executed Restrictions event actions are not automatically aborted directly after problematic
ERP cmdlet usages or incorrect parameter values.
Still, additional stack trace information helps the script guy to quickly find and correct the affected ERP cmdlet
line.

Autodesk Vault Data Standard - Non-Terminating Errors

For ERP integrations implemented via Vault Data Standard, non-terminating errors in ERP cmdlets are only logged in
the Log Window.

32 Chapter 4. Connecting Autodesk & ERP

https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/commandlets/register-vaultevent/
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/objects/event_mappings/
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/#errors
https://help.autodesk.com/view/VAULT/2024/ENU/?guid=GUID-F0F7A520-5765-4FA5-A533-FEDB456B90F8

powerGate

To prevent connection or cmdlet issues beeing swallowed, the customization should therefore check for non-terminating
errors after ERP cmdlet invocations and handle them if necessary. See the “Error handling” examples of the individual
cmdlets for this.

Please note that debugging such customizations within PowerShell IDE’s may also be affected, as the observed error
behavior may differ from that in the Vault Client or Inventor.
Just execute the following line in the debugging session to ensure that no modal dialogs etc. are displayed in the
PowerShell IDE either:

$global:Host.PrivateData.OnNonTerminatingError = [Action[System.Management.Automation.
→˓RuntimeException]] { }

However, the automatic handling of errors can also be suppressed for individual ERP cmdlet invocations by passing
the -ErrorAction SilentlyContinue parameter.
This allows the script execution to continue so that special error handling can be implemented. For example, person-
alized messages can be displayed to the Vault user or specific 4xx responses can be intercepted (see example “Check
SAP Material does not exist or other 400 response occurred”).
Error responses can then be handled as desired using the information provided by the WebRequestException, which is
stored in the global $Error variable.

In any case, all error details are logged and can be found in the logfile.

4.7. Errors 33

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

powerGate

34 Chapter 4. Connecting Autodesk & ERP

CHAPTER

FIVE

BOM WINDOW

5.1 Customization

Localization

The names of the tabs, buttons and columns in the BOM Window will be either displayed in English or German
language.
The Window uses the current threads UI culture to determine the language to be displayed.
In general this is determined by the system’s regional settings.

For changing the UI culture of the current thread within PowerShell, see the available example.

5.1.1 Check and Transfer

In order to open the BOM Window in a PowerShell session, the cmdlet show-bomWindow should be used.
According functions can be implemented that will be executed when performing Check or Transfer operations for Items,
as well as for the BOMs and their rows.
In order to add, remove or manipulate such entities within these functions, there are according PowerShell cmdlets
available as well.

5.1.2 Customizing the layout

The layouts of the BOM and Items table can be modified individually so only columns relevant to the user are shown.
The BOM Tab has the following columns that are always available:

• Name

• Position

• Quantity

• Number

• Status Details

• Status

Additionally all BOM and entity properties are available.

The Item Tab has the following standard columns:

• Name

35

powerGate

• Usages Count (not enabled by default)

• Status Details

• Status

Additionally all entity properties are available.

Add or remove columns

Clicking on the Field Chooser button () will open a new window where you can select the BOM properties (marked
with the icon:) and entity properties that should be displayed.

Filtering rows

Clicking on the small funnel () next to the column name will present a dropdown menu. This menu allows you to
filter all rows based on the value the row has for the filtered column.
Only rows which match the filter condition are shown. On the BOM tab, all parents of a matching row will stay visible
but will be grayed out.
An active filter on a column is indicated by a blue filter icon () in the column header. The filter can be cleared by
selecting the (All) entry.
It is possible to set filters on multiple columns at the same time, only rows that match all filters will be shown.

36 Chapter 5. BOM Window

powerGate

Please note

On the BOM tab, filtering the Status column will filter the BOM status as well as the BomRow status.
Filtered columns are not automatically un-selected so clicking Check or Transfer might include entities that are hidden
by the filters.

Sorting rows

Clicking on a column name will order the rows by this column values. A column that with ordering enabled has a small
arrow next to the column name to indicate whether the column is ordered in ascending () or descending () order.
You can order by one column at a time.

Change column position and size

You can move a column by dragging it to the desired location. The placement of the column is indicated by the blue
arrows.

The size of the columns can be changed.
By double clicking on the right edge of a column header the width gets auto sized based on its contents.

5.1. Customization 37

powerGate

Saving and restoring layouts

The configuration files are saved in the following directory: %LOCALAPPDATA%\coolOrange\powerGate\:

• For the BOM Window: StoredLayout_Window.xml

• For the Bom Tab: StoredLayout_BomsView.xml

• For the Item Tab: StoredLayout_ItemView.xml

The size and position of the BOM window itself is automatically saved when the window is closed and is restored when
the window is opened.

The view settings for the Item and BOM tables are automatically saved when changed and will be restored when the
window is opened. The size of the columns however is only saved after specific view settings are changed, such as
Sorting, Filtering, Adding/Removing columns.

5.2 Status

The Status of BOMs, rows and Items is displayed by one of the following icons:

Icon Name Description Default Status
Details

Un-
known

Entities in this state have not been checked yet. Unknown

Iden-
tical

Entities in this state exist on the ERP side and are identical, or have been
successfully transferred to ERP.

Identical

Differ-
ent

Entities in this state have been compared against the ERP and have some
differences.

Differences
found!

New Entities in this state have been checked but do no exists on the ERP side and
will be created when transferred.

Will be added

Re-
move

Entities in this state will be removed when transferred. Will be removed

Error For entities in this state an error is occured during the Check/Transfer. Error occurred!

38 Chapter 5. BOM Window

powerGate

5.2.1 Status Details

The Status Details is designed to provide the description of the current Status of an entity.

The Status Details are displayed as tooltip when hovering over the Status icon of an entity and for BomRows and Items
in the dedicated Status Details column of the BOM Window.

It is possible to retrieve the Status Details programmatically by accessing the _StatusDetails member of the accord-
ing entity.

The BOM Window exposes a mulit-level bill of material and each item, which is included in the BOM.

5.3 BOM Tab

The BOM Tab displays the BOM with all its rows including sub-level BOMs.

When the whole BOM tree finished loading, the Check1 button can be pressed in order to compare the selected BOMs
with the ones on the ERP side.
It shows us whether the BOM exists, has differences or is identical to the one on the ERP side.
The result will be displayed in the Icon2 on the left of the BOM name (No icon next to the BOM name means the status
is Unknown).
Same goes for the BomRows. All rows of the BOMs will be compared to the ones on the ERP side.
The according result will be displayed as icon in the Status3 column and the according description of the status will be
displayed in the Status Details4 column. The Status Details can also be retrieved when hovering over the status icon.
For more details about the different Status Details- and Icons see here.

After the BOMs have been checked, they can be transferred to the ERP System by pressing the Transfer5 Button.
Please note: BOMs can only be transferred when they have been updated to a status other than Unknown.
Depending on the result of the check, the transfer action handles the selected BOMs and its rows differently:

• BOMs and BomRows which do not exist in the ERP are getting created.

5.3. BOM Tab 39

powerGate

• BOMs and BomRows which already exist in the ERP are ignored during the tranfer action.

• For BOMs and BomRows marked as different the transfer action performs an update.

The result will then again be displayed.

By clicking on the Checkbox6 a BOM can be skipped from the Check and Transfer operation.
The items of those BomRows will be automatically disabled in the Item Tab.

5.4 Item Tab

Clicking on the item Tab will display all the items of the BOM including the RootItem.
If an item is located more then once in the BOM Window, it will be displayed just once.

By pressing the Check1 Button the selected Items will be compared with the ones on the ERP side.
It shows us whether the Item does not exist, whether it has differences or it is identical.
The according result will be displayed in the Status2 column and the according description of the status will be displayed
in the Status Details3 column. The Status Details can also be retrieved when hovering over the status icon.
For more details about the different Status Details- and Icons see here.

After the Items have been checked, they can be transfered to ERP System by pressing the Transfer4 Button.
Depending on the result of the check, the transfer action handles the selected items differently:

• Items which do not exist in the ERP are getting created.

• Items which already exist in the ERP are ignored during the transfer action.

• For items marked as different the transfer action performs an update.

The result will then again be displayed as for the Check operation.

40 Chapter 5. BOM Window

powerGate

By clicking on the Checkbox5 an Item can be skipped from the Check and Transfer operation.

The Usages Count6 (in German: Anzahl Verwendungen) can be displayed using the FieldChooser.
It provides us information about how often an item is located in the BOM Window.

5.5 Errors

The BOM Window can handle errors that occur when loading the BOM tree.
The affected BOMs are marked with an Error Icon, indicating that retrieving its rows failed.

Also errors occurring during Check or Transfer operations are handled by the BOM Window.
When an operation aborts, the remaining BOMs, rows or Items that where not processed, are automatically marked
with an Unknown Icon.

5.5. Errors 41

powerGate

42 Chapter 5. BOM Window

CHAPTER

SIX

CODE REFERENCE

6.1 Cmdlets

6.1.1 Objects

Entity

An Entity object is of type PSObject and represents an entity of a specific type from the ERP-System.

The $entity object is dynamically created depending on the composition of the EntityType.
Each property is attached to the PSObject as NoteProperty member with the same name and value as defined in the
ERP-System.

Syntax

$entity._Keys

Following read-only properties are always available:

Type Name Description
PSObject _Keys A PSObject containing only the Key properties and its values.
PSObject _Properties A PSObject containing Properties, NavigationProperties and its values.

Examples

Properties of the dynamic created Entity:

Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
$entity = Get-ERPObject -EntitySet "Customers" -Keys @{ "CustomerID" = "ANTON" }

<#
CustomerID : ANTON
CompanyName : Antonio Moreno Taquería
ContactName : Antonio Moreno
ContactTitle : Owner
Address : Mataderos 2312
City : México D.F.

(continues on next page)

43

powerGate

(continued from previous page)

Region :
Postalcode : 05023
Country : Mexico
Phone : (5) 555-3932
Fax :

#>

Accessing _Keys and _Properties of the Entity:

Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
$entity = Get-ERPObject -EntitySet "Customers" -Keys @{ "CustomerID" = "ANTON" }
$entity._Keys

<#
CustomerID : ANTON

#>

$entity._Properties
<#

CompanyName : Antonio Moreno Taquería
ContactName : Antonio Moreno
ContactTitle : Owner
Address : Mataderos 2312
City : México D.F.
Region :
PostalCode : 05023
Country : Mexico
Phone : (5) 555-3932
Fax :

#>

EntitySet

The EntitySet object is of type PSObject and represents the metadata information of a specific set of entities from the
ERP-System.

Syntax

$entitySet.Name

Following properties are available:

Type Name Description
System.Uri Service The Url of the Service.
string Name The name of the EntitySet.
string EntityType The name of the associated EntityType.

44 Chapter 6. Code Reference

powerGate

EntityType

The EntityType object is of type PSObject and provides access to the metadata information of a specific entity from
the ERP-System.

Syntax

$entityType.Name

Following properties are available:

Type Name Description
string Name The name of the EntityType.
string Namespace The namespace where the EntityType is located in.
System.Uri Service The Url of the Service.
string EntitySet The name of the EntitSet which the Entity belongs to.
Property[] Keys The Key properties which uniquely identifies the Entity.
Property[] Properties The available properties for the Entity.
NavigationProperty[] Navigationproperties The available navigation properties for the Entity.

ErpService

The ErpService object is of type PSObject and represents the metadata information of a specific service from the
ERP-System.

Syntax

$erpService.Url

Following properties are available:

Type Name Description
System.Uri Url The Url of the Service.
string Name The name of the Service.
bool Available The current availability of the service.

Remarks

When accessing the property Available, powerGate will retry to retrieve the service metadata of the according service.
Therefore each time when accessing the property, a new request will be send to the server in order to provide live data.

6.1. Cmdlets 45

https://learn.microsoft.com/en-us/dotnet/api/system.uri?view=netframework-4.8

powerGate

Multiplicity

The Enum of type powerGate.Erp.Client.Multiplicity specifies the multiplicity for NavigationProperty objects.

Syntax

[powerGate.Erp.Client]:Multiplicity

Note: For a complete list of supported multiplicities and for more informations see: Multiplicity Enumeration.

NavigationProperty

A NavigationProperty object is of type Property and represents the name of the relationship property from one entity
to another within the ERP-System.

Syntax

$navigationProperty

Following properties are available in addition to the Property members:

Type Name Description
bool IsCollection Is true if the navigationproperty is a collection.
Multiplicity Multiplicity the multiplicity of the property.
string TargetEntityType Name of the target EntityType.

Property

The Property object is of type string and represents the name of specific property of an entity from the ERP-System.

Syntax

$property

Following properties are additionally available:

Type Name Description
string DefaultValue The default property value.
Type Type The .Net representation of the property type.
bool IsNullable Nullable properties are allowed to have a null value

46 Chapter 6. Code Reference

powerGate

SapConnect

The SapConnect object is of type ScriptBlock and can be used with Connect-ERP to work with SAP systems.

The $sapConnect variable is based on the SapConnect implementation from the .NET library.

Syntax

1 $sapConnect

Remarks

The $sapConnect variable is available globally in every PowerShell session where the powerGate Module is imported.
It only supports connecting to the services from a single SAP system, by retrieving the X-CSRF-Token and cookie
just once.

Examples

Connecting to a SAP service with CSRF protection

1 Connect-ERP -Service "http://sap.coolorange.com" -User "EX_DEMO" -Password "secret" -
→˓OnConnect $global:sapConnect

Connecting multiple SAP systems with different CSRF-Token expiration intervals:

1 $sapConnect_System2 = {
2 param($settings)
3 # tokens expire every 24h on this system
4 $reconnectInterval = 86400 * 1000
5 ([Action[powerGate.Erp.Client.ErpClientSettings]](New-Object powerGate.Erp.

→˓Client.SapConnect($reconnectInterval))).Invoke($settings)
6 }
7

8 Connect-ERP "http://sap.coolorange.com/CATALOGSERVICE" -OnConnect $Global:sapConnect
9 Connect-ERP "http://sap.some_other_company.com/CATALOGSERVICE" -OnConnect $sapConnect_

→˓System2

Customization

In case the default implementation does not fit your needs (Download Example) the PowerShell module
and extract it to your projects location:

1 .\Modules\connections_sap.psm1

Freely customize the module to your needs!
To make use of the module in your current PowerShell environment it has to be imported:

1 Import-Module ".\Modules\connections_sap.psm1"

6.1. Cmdlets 47

powerGate

In order to use the customized SAP Connect for the authentication with powerGate, use the variable $extendedSapCon-
nect:

1 $connected = Connect-ERP "https://sap.coolorange.com/CATALOGSERVICE" -OnConnect
→˓$global:extendedSapConnect

Attention

If you are setting $settings.OnCreateMessageHandler then the $settings.OnApplyClientHandler will not be called
anymore and the $extendedSapConnect will not work anymore. Therefore be sure to invoke it afterwards with the
returned handler:

1 $global:erpSettings = $settings
2 $settings.OnCreateMessageHandler = {
3 $customHandler = New-Object Your.Custom.Handler
4 # Your other custom code
5 $erpSetting.OnApplyClientHandler.Invoke($customHandler)
6 return $customHandler
7 }

Settings

The ERPSettings object allows reading and writing the configuration from the
C:\ProgramData\coolOrange\powerGate.settings file.
This settings file corresponds to the Vault file located at $/powerGate.settings (see Settings File).

Changing Settings

Since these settings apply to the entire Vault ERP Integrations for all Vault users, the settings should be changed by
Vault administrators using the Settings Dialog (Editor object).

In exceptional cases the C:\ProgramData\coolOrange\powerGate.settings file can be edited in external tools and then
checked back into Vault. This is useful when working in multiple Vaults with slightly different settings.
The Vault History tab can be used to track changes and also to revert to working versions in case of configuration
problems.

Syntax

$ERPSettings

The following properties are available in addition to the derived ApplicationSettingsBase type:

48 Chapter 6. Code Reference

https://learn.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase?view=netframework-4.7

powerGate

Type Name Description
Sys-
tem.Collections.Generic.List<ServiceSettings>

Ser-
vices

Provides the settings for all configured OData services used to establish the connec-
tion to ERP (e.g. the ServiceURLs).For connections routed through the powerGate-
Server, other additional settings are possible than e.g. for SAP Gateway services.

Sys-
tem.Collections.Generic.List<VaultToERPMappings>

TypeMap-
pings

Grants access to mapping configurations between Vault entity types and ERP entity
types.This includes details such as where each ERP Field’s data comes from (e.g.
from a VaultProperty or fixed-value).

Window Edi-
tor

ERP Integration Settings dialog for displaying and changing the configuration Vault-
wide.

In addition, ApplicationSettingsBase also provides methods for reading and writing to the powergate.settings file (e.g.
Reload(), Reset() and Save()).

Examples

Retrieving all configured Services for connecting the ERP system:

$global:ERPSettings.Services | Format-List -Property *,@{'Label'='Type'; 'Expression'={$_
→˓.GetType().Name}}

<#
Service : http://MyADMS:8080/PGS/my_company/ErpService
Host :
Port :
ServicePath :
IsDefaultSetting : False
Type : PowerGateServerServiceSettings

Service : http://sap.coolorange.com/sap/opu/odata/arcona6/DOCUMENT_INFO_RECORD_
→˓SRV
IsDefaultSetting : False
Type : ServiceSettings
#>

Extending ERP field mapping configurations for complex and calculated PowerShell values:

$vaultFile2ErpItemSettings = $global:ERPSettings.GetTypeMapping('File', 'Item')
$descriptionFieldSettings = $vaultFile2ErpItemSettings.FieldMappingsForCreate | Where-
→˓Object { $_.ErpField -eq 'Description' }
$descriptionFieldSettings.ConvertToErpValue = {

param($vaultFile)

$entireDescription = $vaultFile._Description.Trim([Char]'.') # remove dots at␣
→˓the beginning and end

if($vaultFile.Description_2) {
$entireDescription += ' - '
$entireDescription += $vaultFile.Description_2.Substring(0,17)

}

foreach($invalidCharacter in @('<', '>', ':', '*', '/', '\')) {
if($entireDescription.Contains($invalidCharacter)) {

(continues on next page)

6.1. Cmdlets 49

https://learn.microsoft.com/en-us/dotnet/api/system.windows.window?view=netframework-4.7
https://learn.microsoft.com/en-us/dotnet/api/system.configuration.applicationsettingsbase?view=netframework-4.7#methods

powerGate

(continued from previous page)

throw "The translation of the Vault descriptions failed because the␣
→˓resulting ERP description can not contain the character '$invalidCharacter'"

}
}
return $entireDescription

}
}

$global:ERPSettings.GetTypeMapping('FileBomRow', 'BomRow'). `
FieldMappingsForCreate = (

[powerGate.Erp.Client.Properties.FieldSettings] @{

ERPField = 'ChildNumber'
ConvertToErpValue = {

param($vaultBomRow)

if(-not $vaultBomRow._PartNumber) {
return $vaultBomRow.'Raw Material Number'

}
return $vaultBomRow._PartNumber

}
},
[powerGate.Erp.Client.Properties.FieldSettings] @{

ERPField = 'ParentNumber'
ConvertToErpValue = { param($vaultBomRow) $vaultBOM._PartNumber.ToUpper() }

}
)

$global:ERPSettings.TypeMappings | Select-Object -Property *, @{'Label'=
→˓'FieldMappingsForCreate'; 'Expression'={ '[{0}]' -f ($_.FieldMappingsForCreate |␣
→˓format-list | Out-String) }} -ExcludeProperty 'FieldMappingsForCreate' `

| Format-List

<#
VaultEntityType : File
ErpEntityType : ErpServices.Services.Entities.Item
FieldMappingsForCreate : [

ErpField : Number
VaultProperty : File Name
DefaultValue :
ConvertToErpValue : System.Func`2[System.Object,System.

→˓Object]

ErpField : Description
VaultProperty :
DefaultValue :
ConvertToErpValue : { param($vaultFile) ... }

]
IsDefaultSetting : False

(continues on next page)

50 Chapter 6. Code Reference

powerGate

(continued from previous page)

VaultEntityType : FileBomRow
ErpEntityType : ErpServices.Services.Entities.BomRow
FieldMappingsForCreate : [

ErpField : ChildNumber
VaultProperty :
DefaultValue :
ConvertToErpValue : { param($vaultBomRow) ... }

ErpField : ParentNumber
VaultProperty :
DefaultValue :
ConvertToErpValue : { param($vaultBomRow) $vaultBOM._

→˓PartNumber.ToUpper() }
]

IsDefaultSetting : False
#>

Retrieve values for drop-down lists live from ERP and cache them for performance reasons:

This example also helps to quickly create an initial configuration with all possible ERP values, especially if the allowed
ERP keys are unknown and have to be queried via API.
Then, the actual list-values to be used can easily be further adapted and saved by the Vault administrator via the Settings
Dialog.

e.g. directly after line: Connect-ERP -UseSettingsFromVault

$matlGroupFieldSettings = $global:ERPSettings.GetTypeMapping('File', 'BasicData'). `
FieldMappingsForCreate | Where-Object { $_.ErpField -eq 'MatlGroup' }

if(-not $matlGroupFieldSettings.ListValues) {
$allSapMaterialGroups = Get-ERPObjects -EntitySet 'MatlGroupLookupCollection'

foreach ($sapMaterialGroup in $allSapMaterialGroups) {
$matlGroupFieldSettings.ListValues.Add((New-Object powerGate.Erp.Client.

→˓Properties.ListValueEntry -Property @{
Erp = $sapMaterialGroup.MatlType
Display = $sapMaterialGroup.Description

}))
}
$matlGroupFieldSettings.DefaultValue = $allSapMaterialGroups[0].MatlType

}

$matlGroupFieldSettings | Format-List
<#
ErpField : MatlGroup
VaultProperty :
DefaultValue : 06
ListValues : [

Display : Oil Products
Erp : 06
Vault :

(continues on next page)

6.1. Cmdlets 51

powerGate

(continued from previous page)

Display : SSR-Gasoline Prods
Erp : 02
Vault :

Display : Material group 2
Erp : 03
Vault :

...
]

ConvertToErpValue : System.Func`2[System.Object,System.Object]
#>

6.1.2 Show-BOMWindow

Cmdlets

Add-BomWindowEntity

Creates and adds a new entity to the BOM Tab.

Syntax

1 Add-BomWindowEntity [[-Type] <BomWindowEntityType>] [[-Properties] <Object>] [[-Parent]
→˓<PSObject>] [<CommonParameters>]

Parameters

Type Name Description Optional
Bom-
Row /
Material

Type Specifies whether adding a new BomRow or an Material (Item) </
code_reference/commandlets/show-bomwindow/objects/bomrow>

no

PSObject Par-
ent

For BomRow’s </code_reference/commandlets/show-bomwindow/
objects/bomrow> it’s important to specify the parent BOM, where the new
row will be added to

yes (not when
Type is ‘Bom-
Row’)

Hashtable
/ PSOb-
ject

Prop-
er-
ties

The properties for the entity being created yes

52 Chapter 6. Code Reference

powerGate

Return type

BomRow / Item ← on success
empty ← on failure. Exception/ErrorMessage can be accessed using $Error.

Remarks

The Cmdlet’s purpose is to add a new BomRow or Material (Item) to the BOM Window.
The entity’s default State is “Unknown”.

BomRow:
In general two categories of Properties can be provided for all newly created BomRows:

• BOM properties are properties prefixed with Bom (e.g. @{'Bom_Number'= ..., 'Bom_Quantity'= ...,
'Bom_PositionNumber'= ...}). They are displayed only in the BOM-Tab without the prefix.

• Entity properties are all other properties (e.g. @{'Number'= ...}). They are available in the BOM-Tab as well.

Custom BOM properties (e.g. @{'Bom_Unit'= ... ;'Bom_ItemQuantity'= ...}) and Entity properties (e.g.
@{'Description'= ... ; 'SomEntityProperty'= ...}) can be passed and later displayed as columns in the
BOM Window.

Material:
It is possible to create the new Material directly with Properties.

• The name for the new Item can be specified as @{'Number'= ...}.

• Other custom properties can be specified like @{'Description'= ... ; '_Title(Item,CO)'= ...}.

A newly added Material has no associated BomRow.

Examples

Adding a new material in the BOM Window:

1 $newMaterial = Add-BomWindowEntity -Type Material -Properties @{'Number'='100001'}

Adding a new BomRow to a BOM in the BOM Window:

1 $newBomRow = Add-BomWindowEntity -Type BomRow -Parent $bom -Properties @{'Bom_Number'=
→˓'PAD LOCK';'Bom_Quantity'= 23.4;'Bom_PositionNumber'=6}

Adding BomRows with information from the ERP as BOM properties:

1 $erpBomRow = Get-ERPObject -EntitySet "BomItems" -Keys @{ "ChildNumber"="IWillBeDeleted";
→˓"ParentNumber"="CheckBoms";"Position"=1 }

2 $erpBomProperties = @{}
3 foreach ($property in $erpBomRow._Keys.PSObject.Properties) { #Adding _Keys with "Bom_"␣

→˓prefix to pass them as Bom properties
4 $erpBomProperties["Bom_"+$property.Name] = $property.Value
5 }
6 foreach ($property in $erpBomRow._Properties.PSObject.Properties) { #Adding _Properties␣

→˓with "Bom_" prefix to pass them as Bom properties
7 $erpBomProperties["Bom_"+$property.Name] = $property.Value
8 }

(continues on next page)

6.1. Cmdlets 53

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

(continued from previous page)

9 Add-BomWindowEntity -Type BomRow -Parent $bom -Properties $erpBomProperties
10 <#
11 Bom_Number :
12 Bom_PositionNumber : 1
13 Bom_Quantity : 1
14 Bom_ChildNumber : IWillBeDeleted
15 Bom_ParentNumber : CheckBoms
16 _Status : Unknown
17 _StatusDetails :
18 #>

Adding new BomRows that exists in the ERP BOM but not in the Vault BOM and mark them with Status
‘Remove’:

1 function Check-Boms($boms) {
2 foreach($vaultBom in $boms) {
3 $erpBom = Get-ERPObject -EntitySet "Boms" -Keys @{ "ParentNumber"=

→˓$vaultBom.Bom_Number } -Expand "Children"
4 foreach($erpBomRow in $erpBom.Children) {
5 $vaultBomRow = $vaultBom.Children | Where-Object { $_.Bom_Number␣

→˓-eq $erpBomRow.ChildNumber -and $_.Bom_PositionNumber -eq $erpBomRow.Position } |␣
→˓select -First 1

6 if($vaultBomRow -eq $null) {
7 $erpBomRow_to_remove = Add-BomWindowEntity -Type BomRow -

→˓Parent $vaultBom
8 $erpBomRow_to_remove | Update-BomWindowEntity -Status

→˓'Remove' -StatusDetails 'Row will be deleted in ERP.'
9 }

10 }
11 }
12 }

Remove-BomWindowEntity

Removes an entity from the BOM Window.

54 Chapter 6. Code Reference

powerGate

Syntax

1 Remove-BomWindowEntity [[-InputObject] <PSObject>] [<CommonParameters>]

Parameters

Type Name Description Op-
tional

BomRow /
Item

InputOb-
ject

An entity displayed in the BOM Window. The argument accepts pipeline
input

no

Return type

empty ← On failure the Exception/ErrorMessage can be accessed using $Error.

Remarks

The Cmdlets’s purpose is to remove a BomRow or an Item from the BOM Window.
When removing a BomRow, the row and the associated Item will be removed together!
The same applies when removing an Item that depends on a BomRow: the item and the associated BomRow will be
removed at the same time.

Restrictions:

• Items that are used in multiple BOM’s can not be removed

• Only BomRows without any children can be removed

Examples

Removing an item from the BOM Window:

1 $item | Remove-BomWindowEntity

Removing rows from a BOM:

1 foreach($bomRow in $bom.Children) {
2 $bomRow | Remove-BomWindowEntity
3 }

Deletes an item when marked as “Remove” and when successfully deleted in ERP:

1 function Transfer-Items($items) {
2 foreach($item in $items) {
3 if($item._Status -eq 'Remove'){
4 $removed = Remove-ERPObject -EntitySet 'Materials' -Keys @{

→˓'Number'=$item._PartNumber}
5 if($removed) {

(continues on next page)

6.1. Cmdlets 55

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

(continued from previous page)

6 $item | Remove-BomWindowEntity
7 }
8 }
9 }

10 }

Update-BomWindowEntity

Updates an entity in the BOM Window.

Syntax

1 Update-BomWindowEntity [[-InputObject] <PSObject>] [[-Status] <Status>] [[-
→˓StatusDetails] <string>] [[-Properties] <Object>] [<CommonParameters>]

Parameters

Type Name Description Op-
tional

BOM / BomRow
/ Item

InputOb-
ject

An entity displayed in the BOM Window </bom_window>. The argu-
ment accepts pipeline input

no

Status Status The new /bom_window/status of the entity yes
String StatusDe-

tails
The new Status Details </bom_window/status> of the entity yes

Hashtable /
PSObject

Proper-
ties

The properties to add or update for the entity yes

Return type

empty ← On failure the Exception/ErrorMessage can be accessed using $Error.

Remarks

The Cmdlet’s purpose is to update the Properties, Status and StatusDetails of Bom, BomRow and Item in the BOM
Window:

Status and StatusDetails:
When updating the Status the according custom StatusDetails is reset when no -StatusDetails is specified. However,
the tooltip of the Status Icon will hold a default value.
Additionally, when updating the Status of an entity, the progress in the BOM Window will be automatically incremented
for that entity.

Properties:
It is possible to pass new Properties, update existing ones or remove them from the entity as required.

56 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

BomRow:
In general two categories of Properties can be provided for BomRows:

• BOM properties are properties prefixed with Bom (e.g. @{'Bom_Number'= ..., 'Bom_Quantity'= ...,
'Bom_PositionNumber'= ...}). They are displayed only in the BOM-Tab without the prefix.

• Entity properties are all other properties (e.g. @{'_Name'= ...}). They are displayed in both the BOM-Tab
and the Items-Tab.

Custom BOM properties (e.g. @{'Bom_Unit'= ... ;'Bom_ItemQuantity'= ...}) and Entity properties (e.g.
@{'Description'= ... ; 'Title (Item,CO)'= ...}) can be passed and later displayed as columns in the
BOM Window.
They are replacing the current set of BomRow properties or the ones of the associated Item.

Material:

• The standard property @{'_Name'= ...} can be passed in order to update the item number if required.

• Other properties are replacing the current set of custom properties for instance @{'Description'= ... ;
'_Title(Item,CO)'= ...}.

Examples

Updating the Status and StatusDetails of a BOM :

1 $bom | Update-BomWindowEntity -Status 'New' -StatusDetails 'BOM Header does not exist in␣
→˓ERP and will be created!'

Setting and updating properties of an Item:

1 $item | Update-BomWindowEntity -Properties @{"SomeCustomProperty" = "true";
→˓"SomeOtherCustomProperty" = 6.66}

2 $item.'_Title(Item,CO)' = "A new title"
3 $item | Update-BomWindowEntity -Properties $item

Setting new properties to a BomRow by adding a note property member to the object:

1 $bomRow | Add-Member -MemberType NoteProperty -Name "Bom_SomeNewProperty" -Value "A new␣
→˓BOM property"

2 $bomRow | Add-Member -MemberType NoteProperty -Name "SomeNewProperty" -Value "A new␣
→˓Entity property"

3 $bomRow | Update-BomWindowEntity -Properties $bomRow

Updating the Item’s Status and StatusDetails, depending on the existence and equality to the material in ERP:

1 function Check-Items($items) {
2 foreach($item in $items) {
3 $erpItem = Get-ERPObject -EntitySet 'Materials' -Keys @{'Number'=$item._

→˓PartNumber}
4 if($erpItem -eq $null) {
5 $item | Update-BomWindowEntity -Status 'New'
6 }else{
7 if($item._Description -cne $erpItem.Description) {
8 $item | Update-BomWindowEntity -Status 'Different' -

→˓StatusDetails "Description is Different!"
9 }else{

(continues on next page)

6.1. Cmdlets 57

powerGate

(continued from previous page)

10 $item | Update-BomWindowEntity -Status 'Identical'
11 }
12 }
13 }
14 }

Updating a standard BOM property on a BomRow:

1 $bomRow | Update-BomWindowEntity -Properties @{"Bom_PositionNumber" = 4}

The BOM Tab consists of BOMs and BomRows and the Item Tab consists of the Items instead.

Availability restricted to certain functions

The Cmdlets are only available in the context of the Show-BOMWindow cmdlet.
This means, that they can only be used in the functions Check-Boms , Transfer-Boms , Check-Items , Transfer-Items.

To add, change or remove entities in the BOM Window the following Cmdlets should be used:

Name Description
Add-BomWindowEntity Adds a new entity to the BOM Window.
Update-BomWindowEntity Updates an existing entity in the BOM Window.
Remove-BomWindowEntity Removes an entity from the BOM Window.

Objects

Bom

The BOM object is of type PSObject and gets generated based on the result of the function Get-BomRows .
Therefore $boms are usually extended powerVault Files or powerVault Items.

Syntax

1 $bom.Children

Following properties are always available :

Type Name Description
Bom-
Row[]

Children All the child rows returned from the function Get-BomRows as Array of BomRows .

Status _Status The current status of the BOM in the BOM Tab.
string _Status-

Details
The BOM’s Status Details which are displayed in the Status Details column and when hov-
ering over the BOM status in the BOM Tab.

string _Name The name of the BOM header, that gets displayed in the BOM Tab column ‘Name’.

58 Chapter 6. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerGate

Remarks

A list of $boms gets passed into the functions:

• Check-Boms

• Transfer-Boms

Entity Properties

The BOM object directly provides all the information of the Header Item , for instance the Name of the according root
item.
These are all the properties declared with simple names (not starting with the prefix ‘Bom_’).

At least following standard properties should always be available: _Name.

All the other properties are custom properties that can be displayed in both the BOM Tab and the Item Tab.
For example Description, _Category or all the other dynamically generated members of a powerVault File or pow-
erVault Item.

BOM Properties

This are all the properties with the prefix ‘Bom_’, like e.g. Bom_Number, Bom_PositionNumber, Bom_Unit, . . .
In contrast to BomRows , the BOM object can only provide custom properties and there are no standard properties
at all!
BOM properties can only be displayed in the BOM Tab.

BomRow

The BomRow object is of type PSObject and represents an individual row in a BOM .

$bomRows are generated based on the result of the Get-BomRows function and therefore they are usually extended
powerVault FileBomRows or powerVault ItemBomRows.

Syntax

1 $bomRow.Bom_Number

Following properties are always available :

Type Name Description
Status _Status The current status of the BomRow that is displayed in the ‘Status’ column in the BOM

Tab.
string _StatusDe-

tails
The BomRow’s Status Details which are displayed in the Status Details column and
when hovering over the status icon in the BOM Tab.

string Bom_Number The number of the row, that gets displayed in the BOM Tab column ‘Number’.
double /
string

Bom_PositionNumberThe position in the BOM, that gets displayed in the BOM Tab column ‘Position’.

double Bom_Quantity The quantity of the row, that gets displayed in the `BOM Tab column ‘Quantity’.
string _Name The name of the according item of the row, that gets displayed in the BOM Tab column

‘Name’.

6.1. Cmdlets 59

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/itembomrow/

powerGate

Remarks

$bomRows of a specific BOM can be retrieved directly via the Children property on the according $bom object.

BOM Properties

BOM properties can only be displayed in the BOM Tab, because they can provide additional information for an Item
instance in the BOM.
This could simply be the different positions of the same instance of an Item in the whole BOM.
These properties are declared with the ‘Bom_’ prefix.

At least following standard properties should always be available: Bom_Number,Bom_PositionNumber and
Bom_Quantity.

All the other BOM properties are custom properties that can be additionally displayed in the BOM Tab without the
‘Bom_’ prefix.
For example Bom_Unit or all the other dynamically generated ‘Bom_’ members of a powerVault FileBomRow or
powerVault ItemBomRow.

Entity Properties

Entity properties are displayed in both: the BOM Tab and the Item Tab, and they provide directly the information of the
according Item .
This could be e.g. the item’s name, which is always the same for all the different instances of an item in the BOM.
Entity properties are all the properties declared with simple names (not starting with the prefix ‘Bom_’) e.g. _Name,
Description, _Category,

BomRows with a linked Item do provide only one standard properties: _Name.

All the other properties are custom properties that can be additionally displayed in both the BOM Tab and Item Tab
For example Description, _Category or all the other dynamically generated members of a powerVault File or pow-
erVault Item.

Item

The Item object is of type PSObject and gets generated based on the Item information from the result of the Get-
BomRows function.

Therefore $items are usually extended powerVault Files or powerVault Items.

Syntax

$item._Name

Following properties are always available :

60 Chapter 6. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/itembomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerGate

Type Name Description
Sta-
tus

_Status The current status of the Item that is displayed in the ‘Status’ column in the Item Tab.

string _Status-
Details

The Item’s Status Details which are displayed in the Status Details column and when hovering
over the status icon in the Item Tab.

string _Name The name of the Item, that gets displayed in the Item Tab column ‘Name’.

Remarks

A list of $items gets passed into the functions:

• Check-Items

• Transfer-Items

Entity Properties

Entity properties provide all the properties of an entity and are displayed in the Item Tab as well as on the according
rows in the BOM Tab.

At least following standard property should always be available: _Name.

All the other properties are custom properties that can be additionally displayed in the Item Tab.
For example Description, _Category or all the other dynamically generated members of a powerVault File or Item
.

Types which are used in the Required Functions of the Bom-Window:

• BOM

• BomRow

• Item

Required Functions

Check-Boms

This function is executed when clicking the “Check” button within the BOM Tab.
All the BOMs from the BOM Window can be checked against ERP.

Syntax

Check-Boms [-Boms] <Bom[]>

6.1. Cmdlets 61

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerGate

Parameters

Type Name Description input/output Mandatory Default value
Bom [] Boms The Boms which should be checked input yes

Return type

void

Remarks

Each unique BOM shown in the BOM Window is passed to this function.

It’s recommended to update the status of all the BOMs and their rows with the Update-BomWindowEntity cmdlet.
Only in case of connection problems with ERP cmdlets the status of the according BOMs and rows is automatically set
to Error.

When an exception is thrown within this function, the BOM Window shows the Exception message of the terminated
Check operation.
The status of all the BOMs and their Children that where not updated, gets automatically changed to Unknown.

Examples

Checking whether Vault file BOMs exist in the ERP system: BOMs are marked as “New”, “Identical” and with
“Error” icons:

function Check-Boms($boms) {
foreach($vaultBom in $boms) {
if($vaultBom._CategoryName -eq 'Base') {

$vaultBom | Update-BomWindowEntity -Status 'Error' -ToolTip "BOMs for files of␣
→˓the category group 'Base' should not be processed"

}

$erpBom = Get-ERPObject -EntitySet 'Boms' -Keys @{ 'ParentNumber'= $vaultBom.Bom_
→˓Number }

if($? -and -not $erpBom) {
Update-BomWindowEntity -InputObject $vaultBom -Status New -StatusDetails 'BOM␣

→˓does not exist in ERP'
}
if($erpBom) {

Update-BomWindowEntity -InputObject $vaultBom -Status Identical -StatusDetails
→˓'BOM exists in ERP'

}
}

}

62 Chapter 6. Code Reference

powerGate

Note: In case of connection problems during the Get-ERPObject cmdlet, the status of the currently iterated $vaultBom
object is automatically set to ‘Error’.
Further exception details can be retrieved via automatic variables like $? and $Error[0].

Checking whether the Vault file BomRows are “Identical” to those of the ERP BOMs, whether there are “New”
once or rows that should be “Removed”:

function Check-Boms($boms) {
foreach($vaultBom in $boms) {

$erpBom = Get-ERPObject -EntitySet 'Boms' -Keys @{ 'ParentNumber'= $vaultBom.Bom_
→˓Number } -Expand 'Children'

#iterating ERP-BOM rows and checking if they exist in the Vault-BOM
foreach($erpBomRow in $erpBom.Children) {

$vaultBomRow = $vaultBom.Children | Where-Object { $_.Bom_Number -eq $erpBomRow.
→˓ChildNumber -and $_.Bom_PositionNumber -eq $erpBomRow.Position } | select -First 1

if($vaultBomRow -eq $null) {
$bomRow = Add-BomWindowEntity -Type BomRow -Parent $vaultBom -Properties @{
'Bom_Number'=$erpBomRow.ChildNumber;
'Bom_PositionNumber'=$erpBomRow.Position;
'Bom_Quantity'=$erpBomRow.Quantity;

}
Update-BomWindowEntity -InputObject $bomRow -Status Remove

}
elseif($vaultBomRow.Bom_Quantity -cne $erpBomRow.Quantity) {

Update-BomWindowEntity -InputObject $vaultBomRow -Status Different -
→˓StatusDetails "'Quantity' is different:`nVault '$($vaultBomRow.Bom_Quantity)'`nERP '$(
→˓$erpBomRow.Quantity)'"

}
else {

Update-BomWindowEntity -InputObject $vaultBomRow -Status Identical
}

}
#iterating Vault-BOM rows and checking if they exist in the ERP-BOM
if($vaultBom.Children) {
foreach($vaultBomRow in $vaultBom.Children) {

$erpBomRow = $erpBom.Children | Where-Object { $_.ChildNumber -eq
→˓$vaultBomRow.Bom_Number -and $_.Position -eq $vaultBomRow.Bom_PositionNumber } |␣
→˓select -First 1

if($erpBomRow -eq $null) {
Update-BomWindowEntity -InputObject $vaultBomRow -Status New

}
}

}
}

}

6.1. Cmdlets 63

powerGate

Check-Items

This function is executed when clicking the “Check” button within the Item Tab.
All the Items from the BOM Window can be checked against ERP.

Syntax

Check-Items [-Items] <Item[]>

Parameters

Type Name Description input/output Mandatory Default value
Item [] Items The Items which should be checked input yes

Return type

void

Remarks

Each unique Item shown in the BOM Window will be passed to this function.

It’s recommended to update the Status of all the Items with the Update-BomWindowEntity cmdlet.
Only in case of connection problems with ERP cmdlets the status of the according items is automatically set to Error.

When an exception is thrown within this function, the BOM Window shows the Exception message of the terminated
Check operation.
The Status of all the Items that where not updated, gets automatically changed to Unknown.

Examples

Checking whether Vault Items exist in the ERP system: Items are marked as “New”, “Identical” and with
“Error” icons:

function Check-Items($items) {
foreach($item in $items) {
if(-not $item._PartNumber) {

$item | Update-BomWindowEntity -Status 'Error' -StatusDetails 'Number is empty'
}

$erpItem = Get-ERPObject -EntitySet 'Materials' -Keys @{'Number' = $item._
→˓PartNumber} -Expand 'Descriptions'

if($? -and -not $erpItem) {
$item | Update-BomWindowEntity -Status 'New' -StatusDetails 'Item does not exist␣

(continues on next page)

64 Chapter 6. Code Reference

powerGate

(continued from previous page)

→˓in ERP'
}
if($erpItem) {

$item | Update-BomWindowEntity -Status 'Identical' -StatusDetails 'Item exists␣
→˓in ERP'

}
}

}

Note: In case of connection problems during the Get-ERPObject cmdlet, the status of the currently iterated $item
object is automatically set to ‘Error’.
Further exception details can be retrieved via automatic variables like $? and $Error[0].

Get-BomRows

This function is called recursively for loading the BOM tree.
The returned BomRow are the children of the BOMs shown in the BOM Window.

Syntax

Get-BomRows [-BomHeader] <Item>

Parameters

Type Name Description in-
put/output

Manda-
tory

Default
value

Bom-
Row

Bom-
Header

The parent element for which bom rows must be
returned

input yes

Return type

PSObject[] ← typically an array of powerVault FileBomRows or ItemBomRows or empty.
It is recommended for every BomRow to provide at least the following properties :

• _Name← serves as the unique identifier for every BOM and Item

• Bom_Number

• Bom_PositionNumber

• Bom_Quantity

6.1. Cmdlets 65

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/itembomrow/

powerGate

Remarks

The first time the function is called for the root entity, which is passed to the Show-BomWindow -Entity parameter.
For each returned BomRow, the function is then invoked again recursively until no more new rows are returned and the
complete BOM structure is loaded.
In order to signal a leaf of the BOM tree (a BomRow that has no more children) the function should return an empty
array.

Note: The function will only be called once for BOMs that are located multiple times in the BOM tree.

In general two categories of properties can be provided for all the BomRows:

• BOM properties are properties prefixed with ‘Bom_’ (e.g. Bom_PositionNumber, Bom_Unit, . . .). They are
displayed only in the BOM-Tab without the prefix.

• Entity properties are all other properties (e.g. Description, _Category, . . .). They are available in both the
BOM-Tab and the Items-Tab.

Since every BomRow is a PSObject, custom BOM properties and Entity properties can be attached and later displayed
as columns in the BOM Window.

When an exception is thrown within this function, the passed $bomHeader element is marked as failed in the BOM
Window.

Examples

Return a single BOM row with custom properties:

function Get-BomRows($bomHeader){
if($bomHeader._Name -eq 'BomRow'){
return @()

}
$bomRow = New-Object -TypeName PSObject -Property @{
#Recommended properties
_Name='BomRow'
Bom_Quantity=10
Bom_PositionNumber=1
Bom_Number='BomRow'
_Category='Part' #Additional entity property
Bom_Unit='Each' #Additional BOM property

}
return @($bomRow)

}

Return all BOM rows of a Vault Item:

function Get-BomRows($vaultItem) {
$bomRows = Get-VaultItemBom -Number $vaultItem._Number
$bomRows | foreach {
if($vaultItem.Bom_RowOrder) {

Add-Member -InputObject $_ -Name Bom_RowOrder -Value ("{0}.{1}" -f $vaultItem.
→˓Bom_RowOrder,$_.Bom_RowOrder) -MemberType NoteProperty -Force

}
}
return $bomRows

}

66 Chapter 6. Code Reference

powerGate

Return all BOM rows of a Vault file and warn about disabled Structured View:

function Get-BomRows($file) {
$fileBom = Get-VaultFileBom -File $file._FullPath

if(($fileBom | select -ExpandProperty 'Bom_PositionNumber' -Unique) -eq '') {
throw "The BOM of file '$($file._Name)' contains $($fileBom.Count) rows without␣

→˓position number! Please checkout the file in Inventor, enable the Structured View and␣
→˓re-checkin the file to Vault!"

}
return $fileBom

}

Return all BOM rows of a Vault Item or File, by handling purchased, virtual and non-master model state com-
ponents:

function Get-BomRows($bomHeader) {
if($bomHeader._EntityTypeID -notin 'ITEM','FILE') {
return @()

}
if($bomHeader._EntityTypeID -eq "ITEM") {

$bomRows = Get-VaultItemBom -Number $bomHeader._Number
}
if($bomHeader._EntityTypeID -eq "FILE") {
if($bomHeader.Bom_Structure -eq 'Purchased') {
return @()

}
$bomRows = Get-VaultFileBom -File $bomHeader._FullPath -ModelStateType $bomHeader.

→˓Bom_ModelState
}

foreach($bomRow in $bomRows) {
if($null -eq $bomRow._EntityTypeID) {
Virtual components - have no file properties
Add-Member -InputObject $bomRow -Name "BomType" -Value "Virtual" -MemberType␣

→˓NoteProperty -Force
}
if($bomHeader.Bom_RowOrder) {

Add-Member -InputObject $bomRow -Name Bom_RowOrder -Value ("{0}.{1}" -f
→˓$bomHeader.Bom_RowOrder,$bomRow.Bom_RowOrder) -MemberType NoteProperty -Force

}
}
return $bomRows

}

6.1. Cmdlets 67

powerGate

Transfer-Boms

This function is executed when clicking the “Transfer” button within the BOM Tab.
All the BOMs from the BOM Window can be transferred to ERP.

Syntax

Transfer-Boms [-Boms] <Bom[]>>

Parameters

Type Name Description input/output Mandatory Default value
Bom [] Boms The BOMs which should be transfered input yes

Return type

void

Remarks

Each unique BOM shown in the BOM Window with another Status then Unknown is passed to this function.

It’s recommended to update the Status of all the BOMs and their rows with the Update-BomWindowEntity cmdlet.
Only in case of connection problems with ERP cmdlets the status of the according BOMs and rows is automatically set
to Error.

When an exception is thrown within this function, the BOM Window shows the Exception message of the terminated
Transfer operation.
The Status of all the BOMs and their Children that where not updated, gets automatically changed to Unknown.

Examples

Creating all the Vault Item BOMs with Status “New” in ERP: Upon successful deep-creation they are marked
as “Identical” whereby BOMs that should not be transferred are skipped:

function Transfer-Boms($boms) {
foreach($vaultBom in $boms) {
if($vaultBom._Status -eq 'Identical' -or $vaultBom._Status -eq 'Error'){

$vaultBom | Update-BomWindowEntity -Status $vaultBom._Status -StatusDetails
→˓$vaultBom._StatusDetails

}
elseif($vaultBom._Status -eq 'New'){

$result = Add-ERPObject -EntitySet 'Boms' -Properties @{
'ParentNumber'= $vaultBom._PartNumber
'Children' = @($vaultBom.Children | foreach-object {

(continues on next page)

68 Chapter 6. Code Reference

powerGate

(continued from previous page)

@{
'ParentNumber' = $vaultBom._PartNumber
'ChildNumber' = $_.Bom_Number
'Position' = [int]($_.Bom_PositionNumber)
'Quantity' = $_.Bom_Quantity

}})
}
if($result){

$bom | Update-BomWindowEntity -Status 'Identical' -StatusDetails 'BOM␣
→˓created in ERP'

}
}

}
}

Note: In case of connection problems during the Add-ERPObject cmdlet, the status of the currently iterated $vaultBom
object is automatically set to ‘Error’.
Further exception details can be retrieved via automatic variables like $? and $Error[0].

Updating all BomRows with Status “Different” in ERP: setting Status and StatusDetails on the according row:

function Transfer-Boms($boms) {
foreach($vaultBom in $boms) {
foreach($vaultBomRow in $vaultBom.Children){
if($vaultBomRow._Status -eq 'Different'){

$erpBomRow = Update-ERPObject -EntitySet 'BomItems' -Keys $vaultBomRow._Keys␣
→˓-Properties @{'Quantity'=$vaultBomRow.Bom_Quantity}

if($erpBomRow){
$vaultBomRow | Update-BomWindowEntity -Status 'Identical' -StatusDetails

→˓'BomRow updated in ERP'
}

}
}

}
}

Note: In case of connection problems during the Update-ERPObject cmdlet, the status of the currently iterated
$vaultBomRow object is automatically set to ‘Error’.
Further exception details can be retrieved via automatic variables like $? and $Error[0].

6.1. Cmdlets 69

powerGate

Transfer-Items

This function is executed when clicking the “Transfer” button within the Item Tab.
All the Items from the BOM Window can be transferred to to ERP.

Syntax

Transfer-Items [-Items] <Item[]>

Parameters

Type Name Description input/output Mandatory Default value
Item [] Items The Items which should be transfered input yes

Return type

void

Remarks

Each unique Item shown in the BOM Window with another Status then Unknown will be passed to this function.

It is recommended to update the Status of all the Items with the Update-BomWindowEntity cmdlet.
Only in case of connection problems with ERP cmdlets the status of the according items is automatically set to Error.

When an exception is thrown within this function, the BOM Window shows the Exception message of the terminated
Transfer operation.
The Status of all the Items that where not updated, gets automatically changed to Unknown.

Examples

Removing all the Vault Items with Status “Remove” in ERP: after successful deletion the Item disappears in the
BOM Window, otherwise it is marked as “Error”:

function Transfer-Items($items) {
foreach($item in $items) {
if($item._Status -eq 'Remove'){

$removed = Remove-ERPObject -EntitySet 'Materials' -Keys @{'Number'=$item._
→˓PartNumber}

if($removed) {
$item | Remove-BomWindowEntity

}
else {

$item | Update-BomWindowEntity -Status 'Error' -StatusDetails "Error occured␣
→˓when removing item: $($Error[0].Exception.Message)"

(continues on next page)

70 Chapter 6. Code Reference

powerGate

(continued from previous page)

}
}

}
}

Note: In case of connection problems during the Remove-ERPObject cmdlet, the status of the currently iterated $item
object is automatically set to ‘Error’ but it can still be assigned manually.
Exception details can be retrieved via automatic variables like $? and $Error[0].

Following functions have to be available within the current PowerShell Runspace, in order to implement the behaviour
of the BOM Window:

• Check-Boms

• Check-Items

• Get-Bomrows

• Transfer-Boms

• Transfer-Items

Opens the BOM Window for checking and transferring BOM’s and materials of Vault Files or Items.

Syntax

1 Show-BOMWindow [-Entity] <PSObject> [<CommonParameters>]

Parameters

Type Name Description Op-
tional

powerVault File / powerVault
Item

En-
tity

The main Vault entity for which the BOM will retrieved and
displayed.

no

Return type

void

Remarks

The BOM Window retrieves the BOM tree for the passed -Entity by calling the method Get-BomRows recursively.
Such root elements must provide at least entity properties as those provided by powerVault File or Item objects.
However also custom BOM properties, such as those available on powerVault FileBomRows and ItemBomRows, can
be passed and displayed as columns.

In order to customize the Check- and Transfer operations for BOMs and Items, the following functions are required
additionally and must be implemented with custom logic:

Required Functions

6.1. Cmdlets 71

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/itembomrow/

powerGate

• Check-Boms

• Check-Items

• Get-Bomrows

• Transfer-Boms

• Transfer-Items

Examples

Showing the BOM of a Vault Item:

1 $item = Get-VaultItem -Number '100001'
2

3 function Get-BomRows($vaultItem) {
4 return (Get-VaultItemBom -Number $vaultItem._Number)
5 }
6

7 function Check-Items($items) {
8

9 }
10

11 function Transfer-Items($items) {
12

13 }
14

15 function Check-Boms($boms) {
16

17 }
18

19 function Transfer-Boms($boms) {
20

21 }
22

23 Show-BomWindow -Entity $item

Opening the Bom-Window for a Vault file with simple implementation of Check- and Transfer operations:

1 $file = Get-VaultFile -Properties @{'File Name'='MSB-Weld.iam'}
2 if($file._HasModelState) {
3 $allModelStates = Get-VaultFileBom -File $file._FullPath -ModelStateType All
4 $file = $allModelStates | Where-Object { $_.Bom_ModelState -eq 'Face Machining +␣

→˓Treading' }
5 }
6

7 function Get-BomRows($file) {
8 return (Get-VaultFileBom -File $file._FullPath)
9 }

10

11 function Check-Items($items) {
12 foreach($item in $items) {
13 $item | Update-BomWindowEntity -Status 'New'

(continues on next page)

72 Chapter 6. Code Reference

powerGate

(continued from previous page)

14 }
15 }
16

17 function Transfer-Items($items) {
18 foreach($item in $items) {
19 $item | Update-BomWindowEntity -Status 'Identical'
20 }
21 }
22

23 function Check-Boms($boms) {
24 foreach($bom in $boms) {
25 $bom | Update-BomWindowEntity -Status 'New'
26 }
27 }
28

29 function Transfer-Boms($boms) {
30 foreach($bom in $boms) {
31 $bom | Update-BomWindowEntity -Status 'Identical'
32 }
33 }
34

35 Show-BomWindow -Entity $file

Force the Bom-Window to be displayed in german culture:

1 [CultureInfo]::DefaultThreadCurrentUICulture = [CultureInfo]::CreateSpecificCulture('de-
→˓DE')

2 $file= Get-VaultFile -File '$/Designs/Pad Lock/Assemblies/Catch Assembly.iam'
3

4 Show-BomWindow -Entity $file

6.1.3 Add-ERPMedia

Cmdlet to create a streamable entity with a given media file.

6.1. Cmdlets 73

powerGate

Syntax

1 Add-ERPMedia [[-EntitySet] <String>] [[-File] <String>]] [[-Properties] <Object>] [[-
→˓ContentType] <String>]] [<CommonParameters>]

Parameters

Type Name Description Op-
tional

String En-
tity-
Set

The EntitySet name where the Media Link Entity is located. It is also possible to specify
additional namespaces or the whole url (e.g MaterialService/Materials, http://localhost:
8080/PGS/ERP/MaterialService/Materials)

no

String File Path to the file to upload no
Hashtable
/ PSOb-
ject

Prop-
er-
ties

The properties for the entity being created. Those are passed as Slug-Header to the server yes

String Con-
tent-
Type

Specifies the content type of the web request. If no content type is provided Add-
ERPMedia sets the content type depending on the file extension. (e.g .txt ‘text/plain’,
.pdf ‘application/pdf’ . . .)

yes

Return type

Entity ← on success
empty ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

The Cmdlet is used to create Media Link Entries (MLEs) with the request body containing the Media Resource (MR)
and the Content-Type header indicating its media type.
In other words it will create a streamable entity (Media Link Entry) and upload it together with the specified file (Media
Resource).

The ContentType is used to specify the nature of the file currently being handled. With the appropriate content type
the web browser can open the file with the proper extension/plugin.

• If no content type is set the Cmdlet will determine the content type depending on the file type.

• If the content type contains text (e.g text/plain, text/html. . .) as type or json , xml (e.g application/json, applica-
tion/xml. . .) as subtype, then the content of the file is uploaded to the server as UTF-8 Encoded text.

The Properties are passed as Slug-Header to the server, in the augmented BNF syntax.
Please note, that the field-values are passed in JSON-format (depending on the OData-version) to the server. The Slug
header is send as defined in Atom Publishing Protocol by encoding the data to UTF-8 and later using percent encoding
(for all octets outside the ranges %20-24 and %26-7E)!

Note: All Properties are formatted in following format: Property1='SomeText',Property2=666
This format is supported by SAP and powergateserver. Note that other ERP systems could expect data in different
format!

74 Chapter 6. Code Reference

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://tools.ietf.org/html/rfc5023#page-30
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://www.odata.org/documentation/odata-version-2-0/operations
https://tools.ietf.org/html/rfc5023#page-30
https://tools.ietf.org/html/rfc2616#section-2.1
https://tools.ietf.org/html/rfc5023#page-30
http://go.sap.com/
https://doc.coolorange.com/projects/powergateserver/en/stable/

powerGate

Since OData-Servers can create the Media Link Entry completely without using the Slug-Header, the server will re-
spond with the created Media Link Entry, or at least by passing a link to the created MLE in the Location header.
In both cases the cmdlet will take care about returning the newly created Media Link Entry.

Examples

In the following example we are using the public OData Services (http://services.odata.org) for demonstration purposes:

Create Media Link Entry (MLE)

1 Connect-Erp -Service "http://services.odata.org/V4/OData/(S(du4oaehbpzqh2eznhygi1xkg))/
→˓OData.svc"

2 Add-ERPMedia -EntitySet "Advertisements" -File "C:\Temp\TestMedia.txt"
3 <#
4 ID : 7fb23d89-f6b0-4010-b789-2d6e39b62187
5 Name :
6 AirDate : 01.01.2000 00:00:00 +00:00
7 #>

In the following examples we are using a custom plugin for the powergateserver:index:

Create Media Link Entry (MLE) with specific properties

1 Connect-Erp -Service "http://localhost:8080/powerGate.Tests/TestService"
2 Add-ERPMedia -EntitySet "Files" -Properties @{"Id"=2;"FileName"="SampleFile";"Size"=999}␣

→˓-File "C:\Temp\TestMedia.txt"
3 <#
4 Id : 2
5 Created : 01/01/0001 00:00:00
6 Size : 999
7 Value : {}
8 FileName : SampleFile
9 #>

Error handling, analyze why the Media Link Entry could not be created, by using $Error

1 Connect-ERP https://services.odata.org/V3/Northwind/Northwind.svc
2 $mediaEntity = Add-ERPMedia -EntitySet Categories -File C:\Temp\CategoryIcon.png
3

4 if(-not $mediaEntity){
5 $Error[0].Exception #"EntityType Category is not streamable!"
6 }

6.1.4 Add-ERPObject

Cmdlet to create a new entity and transfers it to an ERP-System.

6.1. Cmdlets 75

http://services.odata.org

powerGate

Syntax

1 Add-ERPObject [[-EntitySet] <String>] [[-Properties] <Object>] [<CommonParameters>]

Parameters

Type Name Description Op-
tional

String En-
tity-
Set

The EntitySet name where the item is located. It is also possible to specify additional
namespaces or the whole url (e.g MaterialService/Materials, http://localhost:8080/PGS/
ERP/MaterialService/Materials)

no

Hashtable
/ PSOb-
ject

Prop-
er-
ties

The properties for the entity being created no

Return type

Entity ← on success
empty ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

This Cmdlet is used to create an entity in the ERP-System.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Create an orange Juice

1 Connect-Erp -Service "http://services.odata.org/V4/OData/(S(fa2g1e4kjczcfnog0asxmvhh))/
→˓OData.svc"

2 $entity = Add-ERPObject -EntitySet "Products" -Properties @{
3 "ID "= 5;
4 "Name" = "Orange Juice";
5 "Description" = "The original Orange Juice. Refreshing!";
6 "ReleaseDate" = "2006-08-04T00 =00 =00Z";
7 "DiscontinuedDate" = $null;
8 "Rating" = 3;
9 "Price" = 22.8

10 }

Create a person with details (deep create)

1 Connect-Erp -Service "http://services.odata.org/V4/OData/(S(fa2g1e4kjczcfnog0asxmvhh))/
→˓OData.svc"

(continues on next page)

76 Chapter 6. Code Reference

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://services.odata.org

powerGate

(continued from previous page)

2 $entity = Add-ERPObject -EntitySet "Products" -Properties @{
3 "ID" = 3;
4 "Name" = "Augustin Hodorsson";
5 "PersonDetail" = @{
6 "PersonID" = 3;
7 "Age" = 23;
8 "Gender" = $true;
9 "Phone" = "(307) 555-4680123"

10 }
11 }

Create a Product entity using New-ErpObject

1 Connect-Erp -Service "http://services.odata.org/V4/OData/(S(fa2g1e4kjczcfnog0asxmvhh))/
→˓OData.svc"

2 $product = New-ERPObject -EntityType 'Product'-Properties @{"ID"=11;"Name"="Forst beer"}
3 Add-ERPObject -EntitySet "Products" -Properties $product
4

5 <#
6 ID : 11
7 Name : Forst beer
8 Description :
9 ReleaseDate : 01.01.0001 00:00:00 +00:00

10 DiscontinuedDate :
11 Rating : 0
12 Price : 0
13 #>

Error handling, analyze the AggregateException why the entity could not be created due to several errors, by
using $Error

1 Connect-ERP "https://services.odata.org/V3/(S(fa2g1e4kjczcfnog0asxmvhh))/OData/OData.svc"
2 $entity = Add-ERPObject -EntitySet "PersonDetails" -Properties @{"Age"=$true;"Gender"=

→˓"Female"; "Photo"="This is a Photo"}
3

4 if(-not $entity){
5 $Error[0].Exception #System.AggregateException: "One or more errors occurred."
6 $Error[0].Exception.InnerExceptions
7 <#
8 Following mandatory properties in entity 'PersonDetail' are missing:

→˓'PersonID'
9 Passed value for entity 'PersonDetail' for property with name 'Photo' has a␣

→˓wrong data type 'String', but should be of type 'Stream'.
10 Passed value for entity 'PersonDetail' for property with name 'Gender' has␣

→˓a wrong data type 'String', but should be of type 'Boolean'.
11 #>
12 }

6.1. Cmdlets 77

https://docs.microsoft.com/en-us/dotnet/api/system.aggregateexception?view=netframework-4.5.1

powerGate

6.1.5 Connect-ERP

Allows to connect to powerGateServer services or directly to the OData endpoints of ERP systems.

These can be either the services configured in the Vault within the ERP Integration Settings dialog, or alternatively all
the necessary connection details can be provided via parameters.

Syntax

Configuration from Vault:

Connect-ERP -UseSettingsFromVault [-OnConnect <Scriptblock | String>] [<CommonParameters>
→˓]
<#
PARAMETER

-UseSettingsFromVault
Required true

-OnConnect
Required false

<CommonParameters>
This cmdlet supports the common parameters: ErrorAction, ErrorVariable

#>

Providing connection details directly:

Connect-ERP [[-Service] <Uri>] [[-User] <String>] [[-Password] <String>] [-
→˓IgnoreCertificates] [-OnConnect <Scriptblock | String>] [<CommonParameters>]
<#
PARAMETER

-Service
Required false

-User
Required false

-Password
Required false

-IgnoreCertificates
Required false

-OnConnect
Required false

<CommonParameters>
This cmdlet supports the common parameters: ErrorAction, ErrorVariable

#>

78 Chapter 6. Code Reference

powerGate

Parameters

Type Name Description Default value
SwitchPa-
rameter

UseSettings-
FromVault

Connect to services configured in ERP Integration Set-
tings dialog for the currently connected Vault

False

Script-
block /
String

OnConnect This script block or function will be executed before con-
necting to the service. More details below

Url Service Url to a specific OData service http://localhost:8080/PGS/CatalogService
String User Username which should have permission to read the Ser-

vice
String Password Password which matches with username

SwitchPa-
rameter

IgnoreCer-
tificates

If Flag is set the connection is set up in order to trust all
certificates

False

Return type

Bool:
$true ← on success.
$false ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

If the service to be connected is a CatalogService (available with powerGateServer or SAP), then all its known services
are automatically connected too.
Thereby the same connection details are used as for the CatalogService itself, e.g. the same authentication.

OnConnect

The script block or the function name that is passed to the -OnConnect parameter enables connections to services that
have very specific requirements.
The $settings parameter (see connection settings) allows to manipulate certain settings or even attaching to the
BeforeRequest/AfterResponse handler.
Please note that when connecting to a CatalogService, the specified script block or function is also invoked for all
contained services that will be connected automatically.
When an exception is thrown no connection to the services is established.

6.1. Cmdlets 79

https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

Configuration from Vault

When using the -UseSettingsFromVault switch, the cmdlet connects to all services that are configured for the currently
connected Vault via the $ERPSettings variable.
The connection settings can be changed for each Vault individually using the ERP Integration Settings dialog.

The cmdlet fails when the connected Vault is not properly configured:
For instance, in production Vaults, it’s essential to manually setup the connection to the correct ERP system.
When working with test-Vaults, administrators often overlook to add the necessary configurations to their productive
Vaults, which leads to ERP integration issues after go-live.
However, problems can also arise from sudden changes to the ERP-endpoint itself.

During the trial period or evaluation phase - when no specific configuration has been made - the default settings for a
connection to a public Demo ERP system are used.
This allows all the delivered ERP integration samples to be used out of the box.

Settings File

The cmdlet relies on a hidden Vault file ‘$/powerGate.settings’ which stores all settings of the ERP integration.
A Vault administrator can set the file permissions so that only selected users can check-in changes.
Read and download permissions are required by all Vault users working with the ERP integration in Vault Client,
Inventor or the Job Server.

The the cmdlet downloads the current settings to C:\ProgramData\coolOrange\powerGate.settings.

Providing connection details directly:

The cmdlet can connect directly to a specified -Service URL.
Basic Authentication is used for the connection when passing -User and -Password credentials.

The cmdlet can also be called again for an individual service using different authentication details, e.g. if this service
requires different authentication than the CatalogService.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Connect to the Northwind Service

1 Connect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc"

Connect to a SAP service that requires authentication

1 Connect-ERP -Service "http://sap.coolorange.com" -User "EX_DEMO" -Password "secret" -
→˓OnConnect $global:sapConnect

Connect to all services which are configured for the connected Vault

80 Chapter 6. Code Reference

https://doc.coolorange.com/projects/powergateserver/en/stable/activation_and_trial_limitations/
http://services.odata.org

powerGate

1 Import-Module powerVault
2 Open-VaultConnection
3

4 Connect-ERP -UseSettingsFromVault

Note: When using the cmdlet in applications that may connect to different Vaults, ensure only ERP connections con-
figured for the current Vault are utilized, such as in the following powerJobs Processor script:

1 Import-Module powerGate
2 Disconnect-ERP
3 Connect-ERP -UseSettingsFromVault -ErrorAction Stop

Connect to a service via secured SSL connection and trust all certificates

1 Connect-ERP -Service "https://services.odata.org/V4/Northwind/Northwind.svc" -
→˓IgnoreCertificates

Using the -OnConnect parameter to add a header to each request

1 Connect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc" -OnConnect {
2 param($settings)
3 $settings.BeforeRequest = [Action[System.Net.Http.HttpRequestMessage]] {
4 param($request)
5 $request.Headers.Add("Accept","application/json")
6 }
7 }

Using multiple script blocks in -OnConnect parameter

1 $outputService = {
2 param($settings)
3 Write-host "Connecting to the Service $($settings.BaseUri)"
4 }
5

6 $outputPreferredUpdateMethod = {
7 param($settings)
8 Write-host "Current PreferredUpdateMethod is $($settings.PreferredUpdateMethod)"
9 }

10

(continues on next page)

6.1. Cmdlets 81

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/jobprocessor/jobs/creating_job_scripts/

powerGate

(continued from previous page)

11 Connect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc" -OnConnect {
12 param($settings)
13 $outputService.Invoke($settings)
14 $outputPreferredUpdateMethod.Invoke($settings)
15 $sapConnect.Invoke($settings)
16 }

Error handling, analyze the WebRequestException why the connection to server could not be established, using
$Error:

1 $result = Connect-ERP "https://services.odata.org/NotExisting.svsc"
2

3 if(-not $result){
4 $Error[0].Exception.StatusCode #404
5 $Error[0].Exception.Source #Local computer
6 $Error[0].Exception.Message #"The service is not available or could not be found␣

→˓on the server."
7 $Error[0].Exception.RawResponse #"The resource you are looking for has been␣

→˓removed, had its name changed, or is temporarily unavailable."
8 }

6.1.6 Disconnect-ERP

Disconnects from a ERP system.

Syntax

Disconnect-ERP [[-Service] <Uri>] [<CommonParameters>]

Parameters

Type Name Description Optional
Url Service URL to the service that should be disconnected. yes

Return type

empty ← On failure the Exception/ErrorMessage can be accessed using $Error.

82 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

Remarks

The cmdlet can be invoked without arguments to disconnect all connected ErpServices.
Afterwards they are no longer available in the current session.

Alternatively, the -URL parameter can be used to disconnect individual services by specifying the URL of the respective
service.
If it is a Catalog Service (powerGateServer or SAP systems), the connection to this service and all the contained services
are automatically disconnected.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Disconnect all connected Services

Disconnect-ERP

Disconnect the NorthwindService

Disconnect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc"

Disconnect all not available services

(Get-ERPServices) | where { -not $_.Available } | foreach { Disconnect-ERP -Service $_.
→˓Url}

6.1.7 Get-ERPEntitySets

Cmdlet to retrieve metadata informations about EntitySets.

Syntax

1 Get-ERPEntitySets [[-Service] <String>] [<CommonParameters>]

Parameters

Type Name Description Optional
String Service Retrieve only EntitySets for this service yes

6.1. Cmdlets 83

https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#catalogservice
http://services.odata.org

powerGate

Return type

EntitySet [] ← on success
empty array ← on failure. Exception/ErrorMessage can be accessed using $Error.

Remarks

When calling the Get-ERPSEntitySets without arguments the EntitySets of all available services are returned.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Getting all EntitySets

1 Get-ERPEntitySets

Get EntitySets from the Service:

1 Get-ERPEntitySets -Service "Northwind.svc"

Error handling: Check if an error appeared by using $? and analyze the WebRequestException to understand
why the error occurred, by using $Error:

1 $entitySets = Get-ERPEntitySets -Service "SomeService"
2 if(-not $entitySets){
3 if($? -eq $false){
4 $Error[0].Exception #Could not find any service for: 'SomeService'
5 }
6 else{
7 Write-Host("The Service 'SomeService' does not have any EntitySets!")
8 }
9 }

6.1.8 Get-ERPEntityTypes

Cmdlet to retrieve metadata informations about EntityTypes.

Syntax

1 Get-ERPEntityTypes [[-Service] <String>] [[-EntitySet] <String>] [<CommonParameters>]

84 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://services.odata.org
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#section-1

powerGate

Parameters

Type Name Description Optional
String Service Retrieve all EntityTypes from the specified service yes
String EntitySet Retrieve all EntityTypes from the specified entitySet yes

Return type

EntityType [] ← on success
empty array ← on failure. Exception/ErrorMessage can be accessed using $Error.

Remarks

When calling the Get-ERPEntityTypes without arguments the EntityTypes of all available services are returned.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Getting all available EntityTypes

1 Get-ERPEntityTypes

Getting all EntityTypes from the specified Service “OData.svc”

1 $entityTypes = Get-ERPEntityTypes -Service "OData.svc"
2 $entityTypes #returns Products, Persons...

Getting all available EntityTypes from the EntitySet “Customers”

1 $entityTypes = Get-ERPEntityTypes -EntitySet "Customers"
2 $entityTypes[0].Name #returns Customer

Error handling: Check if an error appeared by using $? and analyze the WebRequestException to understand
why the error occurred, by using $Error:

1 $entityTypes = Get-ERPEntityTypes -Service "SomeService"
2

3 if(-not $entityTypes){
4 if($? -eq $false){
5 $Error[0].Exception #Could not find any service for: 'SomeService'
6 }
7 else{
8 Write-Host("The Service 'SomeService' does not have any EntityTypes!")
9 }

10 }

6.1. Cmdlets 85

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://services.odata.org
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#section-1

powerGate

6.1.9 Get-ERPMedia

Cmdlet to download the attached media link of a specified entity from the ERP-System.

Syntax

Get-ERPMedia [[-EntitySet] <String>] [[-Keys] <Object>] [[-File] <String>]] [
→˓<CommonParameters>]

Parameters

Type NameDescription Op-
tional

String En-
ti-
ty-
Set

The EntitySet name where the item is located. It is also possible to specify additional
namespaces or the whole url (e.g MaterialService/Materials, http://localhost:8080/PGS/
ERP/MaterialService/Materials)

no

Hashtable
/ PSOb-
ject

Keys The reference properties for the searching item no

String File Path where the file should be downloaded (e.g C:\Temp\myFile.txt). In case a file with
the same name already exists it will be overwritten.

no

Return type

Bool:
$true ← on success.
$false ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

The Cmdlet is used to download the Media Link Entries (MLEs) from the specified entity to the specified location.
In case a file with the same name already exists in the specified location it will be overwritten. Also the appropriate
folder structure will be created if it doesn´t exists.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Download media from the Advertisement entity

Connect-Erp -Service "http://services.odata.org/V3/OData/OData.svc"
Get-ERPMedia -EntitySet "Advertisements" -Keys @{"ID" = [Guid]"db2d2186-1c29-4d1e-88ef-
→˓a127f521b9c6"} -File "C:\Temp\TestMedia.txt"

Error handling, analyze why the Media Resource could not be downloaded to the specified directory, by using
$Error

86 Chapter 6. Code Reference

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://www.odata.org/documentation/odata-version-2-0/operations
http://services.odata.org

powerGate

Connect-Erp -Service "https://services.odata.org/V3/OData/OData.svc"
$result = Get-ERPMedia -EntitySet "Advertisements" -Keys @{"ID" = [Guid]"db2d2186-1c29-
→˓4d1e-88ef-a127f521b9c6"} -File "C:\Temp\AdvertismentText.txt"

if(-not $result){
$Error[0].Exception #"Access to the path 'C:\Temp\AdvertismentText.txt' is denied.

}

6.1.10 Get-ERPObject

Cmdlet to retrieve a specific entity from the ERP-System.

Syntax

1 Get-ERPObject [[-EntitySet] <String>] [[-Keys] <Object>] [[-Expand] <String[]>] [[-
→˓Select] <String[]>] [<CommonParameters>]

Parameters

Type NameDescription Op-
tional

String En-
ti-
ty-
Set

The EntitySet name where the item is located. It is also possible to specify additional
namespaces or the whole url (e.g MaterialService/Materials, http://localhost:8080/PGS/
ERP/MaterialService/Materials)

no

Hashtable
/ PSOb-
ject

Keys The reference properties for the searching item no

String[] Ex-
pand

The name/s of the Navigation Property which should be expanded yes

String[] Se-
lect

The name/s of the Property or Navigation Property which should explicitly be requested
and returned

yes

Return type

Entity ← on success
empty ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

6.1. Cmdlets 87

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

Remarks

This Cmdlet is used to retrieve one specific object from ERP.

Per default navigation properties will not be returned unless explicitly specified by using the -Expand parameter with
the name of the property as argument.
The -Select argument lets you receive only those properties or navigation properties which you want to have in the
result.

Error Handling

It is a common use case to utilize this Cmdlet to verify the existence of an object in the ERP system. Therefore it is not
expected that the Cmdlet fails (e.g. throws an error) when the requested object does not exist and handles responses of
type ‘404 Resource not found’ not as errors.

As a result, no warnings or errors will be logged, the $Error variable remains unchanged and the $? Automatic Variable
returns $true.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Request the Category with Id ‘1’

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObject -EntitySet "Categories" -Keys @{ "CategoryID" = 1 }
3 <#
4 CategoryID : 1
5 CategoryName : Beverages
6 Description : Soft drinks, coffees, teas, beers, and ales
7 Picture : {21, 28, 47, 0...}
8 _Keys : @{CategoryID=1}
9 _Properties : @{CategoryName=Beverages; Description=Soft drinks, coffees, teas,␣

→˓beers, and ales; Picture=System.Byte[]}
10 #>

Request a Category with its Navigation Property Products

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObject -EntitySet "Categories" -Keys @{"CategoryID"=1} -Expand "Products"
3 <#
4 Products : {Chai, Chang, Guaraná Fantástica, Sasquatch Ale...}
5 CategoryID : 1
6 CategoryName : Beverages
7 Description : Soft drinks, coffees, teas, beers, and ales
8 Picture : {21, 28, 47, 0...}
9 _Keys : @{CategoryID=1}

10 _Properties : @{Products=powerGate.Erp.Cmdlets.Cmdlets.Results.PsEntity[];␣
→˓CategoryName=Beverages; Description=Soft drinks, coffees, teas, beers, and ales;␣
→˓Picture=System.Byte[]}

11 #>

Request only the ‘CategoryID’ of a Category

88 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#section-1
http://services.odata.org

powerGate

1 $result = Connect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc"
2 Get-ERPObject -EntitySet "Categories" -Keys @{"CategoryID"=1} -Select "CategoryID"
3 <#
4 CategoryID : 1
5 #>

Create an empty entity with New-ERPObject , set the Key and use it to search the entity in the ERP System

1 Connect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc"
2 $category = New-ERPObject -EntityType "Category"
3 $category.CategoryID = 1
4

5 Get-ERPObject -EntitySet "Categories" -Keys $category._Keys
6 <#
7 CategoryID : 1
8 CategoryName : Beverages
9 Description : Soft drinks, coffees, teas, beers, and ales

10 Picture : {21, 28, 47, 0...}
11 _Keys : @{CategoryID=1}
12 _Properties : @{CategoryName=Beverages; Description=Soft drinks, coffees, teas, beers,␣

→˓and ales; Picture=System.Byte[]}
13 #>

Check whether an SAP Material does not exist or if another 400 error response occurred (only for older SAP
Gateway integrations):

1 Connect-ERP -Service 'https://sap_environment/sap/opu/odata/arcona6/MATERIAL_SRV' -
→˓OnConnect $global:sapConnect

2

3 $materialReallyDoesNotExist = $false
4 $material = Get-ERPObject -EntitySet 'MaterialContextCollection' -Keys @{ Material =

→˓'000000000200314159'; Plant = '1001'; ValuationArea=''; ValuationType=''} -Expand @(
→˓'Description','PlantData','BasicData') -ErrorAction SilentlyContinue

5

6 if($? -and $material -eq $null){
7 # For older SAP Gateway interfaces this code block is never executed because␣

→˓unfortunately 400 instead of 404 responses are mistakenly returned when materials doe␣
→˓not exist

8 $materialReallyDoesNotExist = $true
9 }

10

11 # That's why the response message must be checked. Attention to different languages!
12 if($? -eq $false){
13 if($Error[0].Exception.StatusCode -eq 400) {
14 $sapResponse = $Error[0].Exception.RawResponse | ConvertFrom-Json
15 $sapResponse.error.code #SY/530
16

17 if($sapResponse.error.message.lang -eq 'de' -and $sapResponse.error.message.value -
→˓eq 'Das Material 200314159 ist nicht vorhanden oder nicht aktiviert') {

18 $materialReallyDoesNotExist = $true
19 }
20 else {
21 Write-Message "A real error response was returned from SAP: $($sapResponse.

(continues on next page)

6.1. Cmdlets 89

powerGate

(continued from previous page)

→˓error.message.value)"
22 }
23 }
24 else {
25 Write-Message "Also in this case, SAP replied with an error: $($Error[0])"
26 }
27 }
28

29 if($materialReallyDoesNotExist) {
30 # create a new material
31 }

Error handling: Check if an error appeared by using $? and analyze the WebRequestException to understand
why the object could not be retrieved, by using $Error:

1 Connect-ERP -Service "https://services.odata.org/V4/(S(zhhrvnffwxy1zfd0uy2aeye0))/
→˓TripPinServiceRW/"

2 $entity = Get-ERPObject -EntitySet "People" -Keys @{"UserName"="scottketchum"} -Expand
→˓"Trips" -Select "Friends"

3

4 if(-not $entity) {
5 if($? -eq $false) {
6 $Error[0].Exception.StatusCode #500
7 $Error[0].Exception.Message
8 <#
9 The entity instance value of type 'Microsoft.OData.SampleService.Models.TripPin.

→˓Person' doesn't have a value for property 'UserName'.
10 To compute an entity's metadata, its key and concurrency-token property values␣

→˓must be provided.
11 #>
12 $Error[0].Exception.Response.ErrorCode #"InternalServerError"
13 } else {
14 Write-Host("No object found with keys `UserName = scottketchum'!")
15 }
16 }

6.1.11 Get-ERPObjects

Cmdlet to search for specific entities depending on the passed arguments.

Syntax

1 Get-ERPObjects [[-EntitySet] <String>] [[-Top] <int>] [[-OrderBy] <Object>] [[-Filter]
→˓<String>] [[-Expand] <String[]>] [[-Select] <String[]>] [<CommonParameters>]

90 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#section-1

powerGate

Parameters

Type NameDescription Op-
tional

String En-
ti-
ty-
Set

The EntitySet name where the item is located. It is also possible to specify additional
namespaces or the whole url (e.g MaterialService/Materials, http://localhost:8080/
PGS/ERP/MaterialService/Materials)

no

Integer Top The amount of how many items should be shown yes
String Fil-

ter
Query what should be executed as a filter yes

String /
Hashtable /
Hashtable[]

Or-
derBy

Items getting ordered by passed property name and/or direction yes

String[] Ex-
pand

Name/s of the related Navigation Properties which should be included yes

String[] Se-
lect

Name/s of the properties or Navigation Properties which should explicitly be requested
and returned

yes

Return type

Entity [] ← on success
empty array ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

This Cmdlet is used search for specific entities from the ERP.
The Filter argument allows you to specify a filter with OData syntax. More informations about the OData Filter syntax
can be found here.
The OderBy argument can be specified as String, as hashtable or as an array of hashtables.

• If the argument is specified as String then the entities are orderd ascending by the passed property name.

• If the argument is specified as hashtable then the entities are orderd by the passed property name and direction
(‘Ascending’ or ‘Descending’)

• If the argument is specified as array of hashtables, the entities can be orderd by multiple properties, in the specified
direction (See example below)

The Expand allows you to expand multiple navigation properties. As default if the expand argument is not specified
then the entity will be returned without navigation properties.
The Select argument lets you receive only those properties or navigation properties which you want to have in the result.

6.1. Cmdlets 91

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

powerGate

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Search for customers from the company ‘Alfreds Futterkiste’:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 $entity = Get-ERPObjects -EntitySet "Customers" -Filter "CompanyName eq 'Alfreds␣

→˓Futterkiste'"

Search for customers with a companyName starting with ‘A’:

1 Connect-Erp -Service "http://services.odata.org/V3/Northwind/Northwind.svc/"
2 Get-ERPObjects -EntitySet "Customers" -Filter "startswith(CompanyName,'A')"

Get categories:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 $entity = Get-ERPObjects -EntitySet "Categories"

Get first 3 Products:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObjects -EntitySet "Products" -Top 3

Get objects ordered by Name:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObjects -EntitySet "Products" -OrderBy 'Name'

Get objects ordered by the ProductName <Descending>:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObjects -EntitySet "Products" -OrderBy @{'ProductName'='Descending'}

Get objects ordered by the ProductName <Descending> and then the CategoryId <Ascending>:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObjects -EntitySet "Products" -OrderBy @(@{'ProductName'='Descending'},@{

→˓'CategoryID'='Ascending'})

Get objects ordered by the ProductName <Ascending> and then the CategoryId <Descending>:

1 Connect-Erp -Service "http://services.odata.org/V4/Northwind/Northwind.svc/"
2 Get-ERPObjects -EntitySet "Products" -OrderBy @('ProductName',@{'CategoryID'='Descending

→˓'})

Get all OrderID’s of the available ‘Orders’:

1 Connect-ERP -Service "http://services.odata.org/V4/Northwind/Northwind.svc"
2 Get-ERPObjects -EntitySet "Orders" -Select "OrderID"

Error handling: Check if an error appeared by using $? and analyze the WebRequestException to understand
why the error occurred, by using $Error:

92 Chapter 6. Code Reference

http://services.odata.org
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#section-1

powerGate

1 Connect-ERP -Service "https://services.odata.org/V4/Northwind/Northwind.svc/"
2 $filter = "startswith(CustomerID,1234567)"
3 $entities = Get-ERPObjects -EntitySet "Invoices" -Filter $filter
4

5 if(-not $entities){
6 if($? -eq $false){
7 $Error[0].Exception.StatusCode #400
8 $Error[0].Exception.Message
9 <#

10 No function signature for the function with name 'startswith' matches the specified␣
→˓arguments.

11 The function signatures considered are: startswith(Edm.String Nullable=true, Edm.
→˓String Nullable=true).

12 #>
13 $Error[0].Exception.Response.InnerError.StackTrace
14 <#
15 at Microsoft.OData.Core.UriParser.Parsers.FunctionCallBinder.

→˓MatchSignatureToBuiltInFunction(String functionName, SingleValueNode[] argumentNodes,␣
→˓FunctionSignatureWithReturnType[] signatures)

16 ...
17 at Microsoft.OData.Service.Parsing.RequestExpressionParser.ParseFilter()
18 #>
19 }
20 else{
21 Write-Host("No objects found for the `$filter '$filter'!")
22 }
23 }

6.1.12 Get-ERPServices

Cmdlet to retrieve metadata informations about the services.

Syntax

1 Get-ERPServices [-Available] [<CommonParameters>]

Parameters

Type Name Description Optional
SwitchParamter Available Retrieves only the available services yes

6.1. Cmdlets 93

powerGate

Return type

ErpService [] ← on success
empty array ← on failure. Exception/ErrorMessage can be accessed using $Error.

Remarks

When calling the Get-ERPServices without arguments all the services are retrieved.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Get all services

1 $services = Get-ERPServices

Get all available services

1 $availableServices = Get-ERPServices -Available

6.1.13 New-ERPObject

Returns a new and by default empty ERP object of the specified ERP type.

Thereby its field values can be passed directly, or alternatively they are determined automatically.
For Vault entities, for example, based on the mappings configured in the ERP Integration Settings dialog, or from the
$metadata of the ERP system.

Syntax

Configuration from Vault:

New-ERPObject [-EntityType] <string> [-VaultEntity] <PSObject> [<CommonParameters>]
<#
PARAMETER

-EntityType
Required true

-VaultEntity
Required true
Accepts pipeline input: true

<CommonParameters>
This cmdlet supports the common parameters: ErrorAction, ErrorVariable

#>

Providing field values directly:

94 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://services.odata.org

powerGate

New-ERPObject [-EntityType] <string> [[-Properties] <Hashtable / PSObject>] [
→˓<CommonParameters>]
<#
PARAMETER

-EntityType
Required true

-Properties
Required false

<CommonParameters>
This cmdlet supports the common parameters: ErrorAction, ErrorVariable

#>

Parameters

Type Name Description
String En-

tity-
Type

The EntityType of the ERP object that should be returned.It is possible to additionaly specify a
part or the whole namespace (e.g ‘ErpServices.Services.Entities.Item’)

Hashtable
/ PSOb-
ject

Prop-
er-
ties

The field values that should be set on the returned ERP object.

power-
Vault
Object

VaultEntityThe Vault entity, from which mapped Properties in the ERP Integration Settings dialog are set
on the corresonding Fields of the ERP object, that is returned.Typically, a powerVault File, Item,
FileBomRow or ItemBomRow object is passed.

Return type

Entity ← on success
empty ← on failure. Exception/ErrorMessage can be accessed using $Error.

Remarks

With only an -EntityType parameter and no -EntitySet or -Service parameters, the cmdlet searches for the specified
type in all services, considering namespace information.

It analyzes the $metadata for all ERP Properties and NavigationProperties to create a new ERP object.
As a result, the returned field values have the following default values:

• the default field value that is specified in the $metadata (see DefaultValue)

• Empty for nullable properties (see IsNullable).
Note that also NavigationProperties with a target multiplicity of ZeroOrOne or Many are nullable.

• the required target instance for NavigationProperties with a target multiplicity of One, even recursively on mul-
tiple levels

6.1. Cmdlets 95

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/itembomrow/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

Configuration from Vault

A -VaultEntity can be passed after calling Connect-ERP -UseSettingsFromVault (configuration for the currently
connected Vault is then provided by the $ERPSettings variable).
The prerequisite is that a type mapping has been set up for the specified Vault- and ERP entity type via the ERP
Integration Settings dialog (e.g. $vaultFile and -EntityType 'Item').

Based on the configured Field Mappings the returned ERP object is automatically filled with data.
For this, the respective ERP fields provide the values of the mapped Vault Properties or alternatively the configured
fixed-values.
Additional settings are also taken into account, such as special default values if the Vault Property is empty, matching
ERP values from a possible value list, and complex or calculated value determinations.

Providing field values directly

When -Properties are passed, the cmdlet assigns them directly to the fields of the newly created ERP object.
Note that the parameter only accepts existing properties, and the passed values are not checked for validity!

Examples

In the following examples we are using the public OData Northwind Services for demonstration purposes:

Create a new instance by specifying the EntityType

1 $territory = New-ERPObject -EntityType 'Territory'

Create a new instance by specifying the whole EntityType with namespace

1 $shipper= New-ERPObject 'NorthwindModel.Shipper'

Create a new ERP object from a Vault file for which mappings are configured

96 Chapter 6. Code Reference

http://services.odata.org/V4/Northwind/Northwind.svc

powerGate

1 Import-Module powerVault
2 ...
3 $file = Get-VaultFile -Properties @{'File Name'='Pad Lock.iam'}
4

5 Connect-ERP -UseSettingsFromVault
6 $erpObject = $file | New-ERPObject -EntityType 'Item'
7

8 $erpObject | Format-List Number,Title,Description,Material,UnitOfMeasure,Weight
9 <#

10 Number : ERP-17425549
11 Title : Pad Lock
12 Description : PAD LOCK ASSEMBLY
13 Material : Steel
14 UnitOfMeasure : CM
15 Weight : 0.130
16 #>

Create a new ERP object instance with specific field values

1 $region = New-ERPObject 'Region' -Properties @{'RegionID'=1}
2 $territory = New-ERPObject -EntityType 'Territory' -Properties @{'TerritoryID'='66';

→˓'Region'=$region}
3 $region.Territories = @($territory)

Dynamically create new instances for all the EntityTypes of a specific service

1 $allEntityTypes = Get-ERPEntityTypes -Service 'http://services.odata.org/V3/Northwind/
→˓Northwind.svc'

2 $allEntityTypes | foreach {
3 New-ERPObject ($_.Namespace+'.'+$_.Name)

(continues on next page)

6.1. Cmdlets 97

powerGate

(continued from previous page)

4 }

Error handling, analyze why no default ERP object is created, by using $Error

1 Connect-ERP -Service "http://services.odata.org/V3/Northwind/Northwind.svc"
2 $entity = New-ERPObject -EntityType "People"
3

4 if(-not $entity){
5 $Error[0].Exception #"No EntityType found with the given name: People"
6 }

6.1.14 Remove-ERPObject

Cmdlet to remove a specific entity from the ERP-System.

Syntax

Remove-ERPObject [[-EntitySet] <String>] [[-Keys] <Object>] [<CommonParameters>]

Parameters

Type NameDescription Op-
tional

String En-
ti-
ty-
Set

The EntitySet name where the item is located. It is also possible to specify additional
namespaces or the whole url (e.g MaterialService/Materials, http://localhost:8080/PGS/
ERP/MaterialService/Materials)

no

Hashtable
/ PSOb-
ject

Keys The reference properties for the searching item

Return type

Bool:
$true ← on success.
$false ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

98 Chapter 6. Code Reference

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error

powerGate

Remarks

This Cmdlet is used to delete a specific object from the ERP System.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Remove Product with Id 1

1 Connect-ERP -Service "http://services.odata.org/V3/(S(xnnohcch2jddbn1z1ytpfni2))/OData/
→˓OData.svc/"

2 Remove-ErpObject -EntitySet "Products" -Keys @{"ID"=1}

Search for Product and remove it

1 Connect-ERP -Service "http://services.odata.org/V3/(S(xnnohcch2jddbn1z1ytpfni2))/OData/
→˓OData.svc/"

2 $product = Get-ERPObject -EntitySet "Products" -Keys @{"ID"=10}
3 Remove-ErpObject -EntitySet "Products" -Keys $product._Keys

Error handling, analyze why the ERP object could not be removed, by using $Error

1 Connect-ERP -Service "http://services.odata.org/V3/(S(xnnohcch2jddbn1z1ytpfni2))/OData/
→˓OData.svc/"

2 $result = Remove-ErpObject -EntitySet "Products" -Keys @{}
3

4 if(-not $result){
5 $Error[0].Exception #"Following mandatory properties in entity 'Product' are missing: 'ID'

→˓"
6 }

6.1.15 Update-ERPMedia

Cmdlet to update the Media Resource of an existing streamable entity with a given media file.

Syntax

Update-ERPMedia [[-EntitySet] <String>] [[-File] <String>]] [[-Keys] <Object>] [[-
→˓ContentType] <String>]] [<CommonParameters>]

6.1. Cmdlets 99

http://services.odata.org

powerGate

Parameters

Type Name Description Op-
tional

String En-
tity-
Set

The EntitySet name where the Media Link Entity is located. It is also possible to specify
additional namespaces or the whole url (e.g MaterialService/Materials, http://localhost:
8080/PGS/ERP/MaterialService/Materials)

no

Hashtable
/ PSOb-
ject

Keys The reference properties for the entity beeing updated no

String File Path to the file to upload no
String Con-

tent-
Type

Specifies the content type of the web request. If no content type is provided, the cmdlet
sets the content type depending on the file extension. (e.g .txt ‘text/plain’, .pdf ‘applica-
tion/pdf’ . . .)

yes

Return type

Bool:
$true ← on success.
$false ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

The Cmdlet is used to update the Media Resource of an existing Media Link Entry (MLE) by uploading the specified
file.

The ContentType is used to specify the nature of the file currently being handled. With the appropriate content type
the web browser can open the file with the proper extension/plugin.

• If no content type is set the Cmdlet will determine the content type depending on the file type.

• If the content type contains text (e.g text/plain, text/html. . .) as type or json , xml (e.g application/json, applica-
tion/xml. . .) as subtype, then the content of the file is uploaded to the server as UTF-8 Encoded text.

Examples

In the following example we are using the public OData Services (http://services.odata.org) for demonstration purposes:

Updating the Media Resource of a Media Link Entry (MLE)

Invoke-WebRequest -Uri 'https://randompokemon.com/sprites/normal/143.gif' -OutFile 'C:\
→˓Temp\TestMedia.gif'
Connect-Erp -Service "http://services.odata.org/V4/OData/(S(du4oaehbpzqh2eznhygi1xkg))/
→˓OData.svc"
Update-ERPMedia -EntitySet "Advertisements" -Keys @{ID=[Guid]'f89dee73-af9f-4cd4-b330-
→˓db93c25ff3c7'} -File 'C:\Temp\TestMedia.gif'

100 Chapter 6. Code Reference

http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://www.odata.org/documentation/odata-version-2-0/operations
http://services.odata.org

powerGate

Note: The cmdlet automatically detects the ContentType of the file to be ‘image/gif ’. The browser is able to use this
information and directly show the image. You can test the updated Media Resouce by clicking here.

In the following examples we are using a custom plugin for the powerGateServer :

Updating the Media Resource of a Media Link Entry (MLE) with specific ConentType and download it again

Invoke-WebRequest -Uri 'https://randompokemon.com/sprites/normal/6.gif' -OutFile 'C:\
→˓Temp\TestMedia.gif'
Connect-Erp -Service "http://localhost:8080/powerGate.Tests/TestService"
Update-ERPMedia -EntitySet "Files" -Keys @{"Id"=2} -File "C:\Temp\TestMedia.gif" -
→˓ContentType 'image/x-xbitmap'
Get-ERPMEdia -EntitySet "Files" -Keys @{Id=2} -File "C:\Temp\TestMedia_2.gif"

Error handling, analyze the WebRequestException why the Media Resource could not be updated, by using $Error

Connect-Erp -Service "https://services.odata.org/V3/(S(o2bnti0dqsoaosxxnt5pci1q))/OData/
→˓OData.svc/"
$result = Update-ERPMedia -EntitySet "Advertisements" -Keys @{"ID"=[guid]"f89dee73-af9f-
→˓4cd4-b330-db93c25ff3c7"} -File "C:\Temp\MyPictures\GT220 Change Proposal.png"

if(-not $result){
$Error[0].Exception.StatusCode #413
$Error[0].Exception.Message #"Request Entity Too Large"

}

6.1.16 Update-ERPObject

Cmdlet to update an existing entity in the ERP-System.

Syntax

Update-ERPObject [[-EntitySet] <String>] [[-Keys] <Object>] [[-Properties] <Object>] [
→˓<CommonParameters>]

Parameters

Type Name Description Op-
tional

String En-
tity-
Set

The EntitySet name where the item is located. It is also possible to specify additional
namespaces or the whole url (e.g MaterialService/Materials, http://localhost:8080/PGS/
ERP/MaterialService/Materials)

no

Hashtable
/ PSOb-
ject

Keys The reference properties for the updating item no

Hashtable
/ PSOb-
ject

Prop-
er-
ties

The properties which should be changed no

6.1. Cmdlets 101

http://services.odata.org/V4/OData/(S(du4oaehbpzqh2eznhygi1xkg))/OData.svc/Advertisements(f89dee73-af9f-4cd4-b330-db93c25ff3c7)/\protect \T1\textdollar value
https://doc.coolorange.com/projects/powergateserver/en/stable/
http://localhost:8080/PGS/ERP/MaterialService/Materials
http://localhost:8080/PGS/ERP/MaterialService/Materials

powerGate

Return type

Entity ← on success
empty ← on failure. Exception/ErrorMessage can be accessed using $Error.
If the cmdlet fails due to error responses returned by the ERP system, the $Error variable provides a WebRequestEx-
ception .

Remarks

This Cmdlet is used to update an existing entity in ERP.
Per default it uses a HTTP MERGE request.

Method: PUT

When using PUT as PreferredUpdateMethod please note that you have to pass all properties, otherwise it will re-
place/reset the properties which where not passed.
For more information see: 2.6 Updating Entries

Examples

In the following examples we are using the default “ERP” plugin from the powerGateServer. Additionally they assume
that objects with following entities exist:

• On Materials: “Number” = “3169”

• On Descriptions: “Number” = “6931”, “Language” = “EN”

Update type in Material

Connect-Erp -Service "http://localhost:8080/pgs/ERP/MaterialService/"
$entity = Update-ERPObject -EntitySet "Materials" -Keys @{ "Number" = "3169" } -
→˓Properties @{ "Type" = "updated Type"}

Update description in MaterialDescription

Connect-Erp -Service "http://localhost:8080/pgs/ERP/MaterialService/"
$entity = Update-ERPObject -EntitySet "MaterialDescriptions" -Keys @{ "Number" = "6931";
→˓"Language" = "EN" } -Properties @{ "Description" = "changed by powerGate"}

In the following example we are using the public OData Services (http://services.odata.org):
Search for Product and update it

Connect-ERP -Service "http://services.odata.org/V3/(S(xnnohcch2jddbn1z1ytpfni2))/OData/
→˓OData.svc/"
$product = Get-ERPObject -EntitySet "Products" -Keys @{"ID"=9}
Update-ERPObject -EntitySet "Products" -Keys $product._Keys -Properties @{"Rating"=9;
→˓"Price"=1.99}

<#
ID : 9
Name : Lemonade
Description : Classic, refreshing lemonade (Single bottle)
ReleaseDate : 01.01.1970 00:00:00

(continues on next page)

102 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#error
http://www.odata.org/documentation/odata-version-2-0/operations/
https://doc.coolorange.com/projects/powergateserver/en/stable/
http://services.odata.org

powerGate

(continued from previous page)

DiscontinuedDate :
Rating : 9
Price : 1,99

#>

Update description using PUT as PreferredUpdateMethod

Connect-Erp -Service "http://localhost:8080/pgs/ERP/MaterialService/" -OnConnect {
param($settings)
$settings.PreferredUpdateMethod = "PUT"

}
$entity = Update-ERPObject -EntitySet "MaterialDescriptions" -Keys @{ "Number" = "6931";
→˓"Language" = "EN" } -Properties @{ "Description" = "change with PUT request"}

Error handling, analyze the WebRequestException why the entity could not be updated, by using $Error

Connect-Erp -Service "https://services.odata.org/V3/OData/OData.svc"
$entity = Update-ERPObject -EntitySet "Persons" -Keys @{"ID"=1} -Properties @{"Name"=
→˓"Sepp Meißnor"}

if(-not $entity){
$Error[0].Exception.StatusCode #403
$Error[0].Exception.Message #"You are connected to a read-only data session.␣

→˓Update operations are not permitted for your session"
}

All the following OData cmdlets support OData version v1, v2, v3, v4.
They all try to perform as less server requests as possible, in order to ensure high performance when communicating
over the network or the internet with your ERP system.

6.1.17 Connection management

Cmdlets for connection establishment with OData services:

Name Description
Connect-ERP Connects to an ERP-System.
Disconnect-ERP Disconnects from an ERP-System.

Cmdlets to read metadata of connected OData services:

Name Description
Get-ERPServices Returns information about the connected services
Get-ERPEntitySets Returns information about the available entitySets
Get-ERPEntityTypes Returns information about the available EntityTypes.

Metadata

6.1. Cmdlets 103

powerGate

Requests to retrieve the service $metadata are only performed when needed and only for the required services.
When services are not available, powerGate will try to retrieve there metadata as long as they become available! Warn-
ings will be logged in order to inform about the downtime of the service.

After retrieving metadata once, no further metadata request is required as the server results are cached.

Performance

When some of the services are permanently not available, you can speed up your process by disconnecting them.
Please see example Disconnect all not available services.

The following Cmdlets require a successful connection between the current application and the ERP system or pow-
erGateServer.
For them to work properly, all the necessary ERP services (or a single CatalogService) must have been previously
connected by the Connect-ERP cmdlet.

6.1.18 Entity transfer

Cmdlets for reading, adding, updating and removing OData entities:

Name Description
Get-ERPObject Returns a specific entity from the ERP-System.
Get-ERPObjects Searches for entities depending on the passed arguments.
Update-ERPObject Updates an existing entity on the ERP-System.
Add-ERPObject Creates a new entity and transfers it to a ERP-System.
Remove-ERPObject Deletes a specific entity from the ERP-System.
New-ERPObject Returns a new default instance of the desired ERP entity.

6.1.19 Media exchange

Cmdlets for downloading, uploading and updating OData media files such as images, text files or even Autodesk file
formats:

Name Description
Add-ERPMedia Uploads media files to the ERP-System.
Get-ERPMedia Downloads media files from the ERP-System.
Update-ERPMedia Updates media files on the ERP-System.

104 Chapter 6. Code Reference

https://doc.coolorange.com/projects/powergateserver/en/stable/
https://doc.coolorange.com/projects/powergateserver/en/stable/

powerGate

6.2 .NET Library

6.2.1 ConnectionSettings Class

SapConnect Class

Class which provides a default implementation for connecting to SAP services and handling CSRF protection.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.SapConnect

Syntax

1 public class SapConnect

The SapConnect type exposes the following members.

Constructors

Type Description
SapConnect(long reconnect-

Interval = 1500 * 1000)
Initializes a new instance of the SapConnect class. The default reconnectInterval
parameter, expressed in milliseconds, is set to 25 minutes.

Operator

Type Description
Implicit(SapConnect to Ac-

tion<ErpClientSettings>)
Converts the SapConnect object to an action of type Ac-
tion<ErpClientSettings>.

Remarks

Since most of the SAP systems require PUT requests as the preferred method to update entities in SAP, this class
adapts the according PreferredUpdateMethod to UpdateMethod.PUT .

Additionally many SAP systems require by default CSRF protection.
The Netweaver Gateway extension requires for every update/write operation the X-CSRF-Token header to be set and
a cookie.
Because the X-CSRF-Token expires after a certain amount of time, the Token will be automatically refreshed, on the
next request after the expiration!
Depending on the SAP Release or the security session management configuration, the Token is valid for 24 hours or

6.2. .NET Library 105

https://help.sap.com/viewer/753088fc00704d0a80e7fbd6803c8adb/7.4.22/en-US/5574ed6c93654ee4999b4d07cdda532c.html
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://help.sap.com/viewer/753088fc00704d0a80e7fbd6803c8adb/7.4.22/en-US/5574ed6c93654ee4999b4d07cdda532c.html

powerGate

30 minutes by default.
The default behaviour to retrieve a new token every 25min can be changed the reconnectInterval parameter in the
constructor.

Examples

Connect to a SAP service using SapConnect

1 using (var erpclient = new ErpClient())
2 {
3 var connectionSettings = new ConnectionSettings
4 {
5 Service = new Uri("http://sap.coolorange.com/CATALOGSERVICE"),
6 Credentials = new System.Net.NetworkCredential("Administrator", "<secret␣

→˓password>"),
7 OnConnect = new SapConnect() //SAP Connection
8 };
9 using (var service = erpclient.ConnectErp(connectionSettings))

10 Console.Write("Connected to SAP service: {0}", service.Name);
11 }

Connecting multiple SAP systems with different CSRF-Token expiration intervals:

1 using (var erpclient = new ErpClient())
2 {
3 var connectionSettings1 = new ConnectionSettings
4 {
5 Service = new Uri("http://sap.coolorange.com/CATALOGSERVICE"),
6 OnConnect = new SapConnect()
7 };
8 var connectionSettings2 = new ConnectionSettings
9 {

10 Service = new Uri("http://sap.some_other_company.com/CATALOGSERVICE"),
11 OnConnect = new SapConnect(86400 * 1000) //tokens expire every 24h on␣

→˓this system
12 };
13 using (var service1 = erpclient.ConnectErp(connectionSettings1))
14 using (var service2 = erpclient.ConnectErp(connectionSettings2))
15 {
16 Console.Write("Connected to SAP-1: {0}", service1.Name);
17 Console.Write("Connected to SAP-2: {0}", service2.Name);
18 }
19 }

106 Chapter 6. Code Reference

powerGate

See also

Reference

• $sapConnect

• powerGate.Erp.Client namespace

Settings used to connect with the ERP Service.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.ConnectionSettings

Syntax

1 public class ConnectionSettings

The ConnectionSettings type exposes the following members.

Constructors

Name Description
ConnectionSettings() Initializes a new instance of the ConnectionSettings class.

Properties

Type Name Description
Uri Service Gets or sets the Url of the service to connect with.
ICredentials Credentials Gets or sets the credentials to connect with the services.
bool IgnoreCer-

tificates
Gets or sets the property whether to trust all certificates.

Ac-
tion<ErpClientSettings>

OnConnect Gets or sets the Action which will be invoked before connecting to the ser-
vice. More details below.

6.2. .NET Library 107

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.icredentials%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/018hxwa8%28v=vs.110%29.aspx

powerGate

Remarks

The OnConnect-Action will be executed before connecting to the service.
In case of the CatalogService, the OnConnect will be called for each service it connects to.
Setting the Action will allow you to manipulate certain settings or even attaching to the BeforeRequest/AfterResponse
handler.

Examples

The following example creates an instance of the ConnectionSettings class.

Create settings with Credentials

1 var connectionSettings = new ConnectionSettings {
2 Service = new Uri("http://services.odata.org/V4/Northwind/Northwind.svc"),
3 Credentials = new NetworkCredential("MyUserName", "1234"),
4 IgnoreCertificates = true
5 };

Create settings using the OnConnect property to add a header to each request

1 var connectionSettings = new ConnectionSettings {
2 Service = new Uri("http://services.odata.org/V4/Northwind/Northwind.svc"),
3 OnConnect = settings => {
4 //Set a 5 seconds request timeout
5 settings.RequestTimeout = TimeSpan.FromSeconds(5);
6 //Add header to each request
7 settings.BeforeRequest = requestMessage => { requestMessage.Headers.Add(

→˓"Accept", "application/json"); };
8 }
9 };

See also

Reference

• powerGate.Erp.Client namespace

6.2.2 ErpClient Class

Provides a class to connect with ERP services.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

108 Chapter 6. Code Reference

powerGate

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.ErpClient

Syntax

1 public class ErpClient : IErpClient

The ErpClient type exposes the following members.

Constructors

Name Description
ErpClient() Initializes a new instance of the ErpClient class.

Properties

Type Name Description
IErpServices Services Gets the list of connected services.

Methods

Type Name Description
IErpSer-

vice
ConnectErp(ConnectionSettings con-
nectionSettings)

Creates a connection to a service using the specified Con-
nectionSettings.

void Dispose() Disconnects from all services and releases all resources used
by the ErpClient.

Extension Methods

Type Name Description
IErpSer-
vice

ConnectErp(Uri service, ICredentials credentials = null, bool ig-
noreCertificates = false, Action<ErpClientSettings> onConnect
= null)

Overloaded. Creates a connection to
a service using the specified parameter
values.

6.2. .NET Library 109

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerGate

Remarks

The ConnectErp(..) function is able to either connect to a CatalogService or directly to a Service.
When calling the function passing settings having an url to a CatalogService, the client automatically connects to all
the registered services with the same authentication as used for the login to the CatalogService.
The function can be recalled for a single service with different authentication if that service is not available by using
the authentication of the CatalogService.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:
Connect to the NorthwindService

1 using System;
2 using powerGate.Erp.Client;
3

4 namespace HelloWorldServices
5 {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 //Create Instance of client
11 using (var erpclient = new ErpClient())
12 {
13 //Connect to the service
14 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V4/Northwind/Northwind.svc")))
15 Console.Write("Connected to service: {0}",␣

→˓service.Name);
16 }
17 }
18 }
19 }

Connect to a service via secured SSL connection and trust all certificates

1 using System;
2 using powerGate.Erp.Client;
3

4 namespace HelloWorldServices
5 {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 var erpclient = new ErpClient();
11 var service = erpclient.ConnectErp(new Uri("https://services.

→˓odata.org/V4/Northwind/Northwind.svc"), ignoreCertificates: true);
12 //Dispose Service and Client
13 service.Dispose();
14 erpclient.Dispose();
15 }

(continues on next page)

110 Chapter 6. Code Reference

http://services.odata.org

powerGate

(continued from previous page)

16 }
17 }

Connect to a SAP service that requires authentication

1 using System;
2 using System.Net;
3 using powerGate.Erp.Client;
4

5 namespace HelloWorldServices
6 {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 using(var erpclient = new ErpClient())
12 {
13 //Create special ConnectionSettings for connecting to␣

→˓the SAP service
14 var connectionSettings = new ConnectionSettings
15 {
16 Service = new Uri("http://sap.coolorange.com"),
17 Credentials = new NetworkCredential("EX_DEMO",

→˓"secret"),
18 OnConnect = new SapConnect()
19 };
20 using(var service = erpclient.

→˓ConnectErp(connectionSettings))
21 Console.Write("Connected to service: {0}",␣

→˓service.Name);
22 }
23 }
24 }
25 }

Accessing the last server response

1 using System;
2 using System.Net.Http; //assembly has to be referenced
3 using powerGate.Erp.Client;
4

5 namespace HelloWorldServices
6 {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 var onConnect = new Action<ErpClientSettings>(settings =>
12 {
13 settings.AfterResponse = (response =>
14 {
15 if (response.IsSuccessStatusCode)

(continues on next page)

6.2. .NET Library 111

powerGate

(continued from previous page)

16 return;
17 Console.WriteLine("Request Url: " + response.

→˓RequestMessage.RequestUri);
18 Console.WriteLine("Status Code: " + response.

→˓StatusCode);
19 Console.WriteLine("Body: " + response.Content.

→˓ReadAsStringAsync().Result);
20 }) + settings.AfterResponse;
21 });
22 using (var erpclient = new ErpClient())
23 try
24 {
25 erpclient.ConnectErp(new Uri("https://www.

→˓coolorange.com"), onConnect: onConnect);
26 }
27 catch (Exception e)
28 {
29 }
30 }
31 }
32 }
33

34 /* Console Output
35 Request Url: https://www.coolorange.com/$metadata
36 Status Code: NotFound
37 Body: <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
38 <html><head>
39 <title>404 Not Found</title>
40 </head><body>
41 <h1>Not Found</h1>
42 <p>The requested URL /$metadata was not found on this server.</p>
43 <hr>
44 <address>Apache Server at www.coolorange.com Port 443</address>
45 </body></html>
46 */

Error handling, analyze why entity could not be updated

1 using System;
2 using System.Collections.Generic;
3 using powerGate.Erp.Client;
4

5 namespace HelloWorldServices {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 using (var erpclient = new ErpClient())
11 {
12 try
13 {
14 using (var service = erpclient.ConnectErp(new␣

(continues on next page)

112 Chapter 6. Code Reference

powerGate

(continued from previous page)

→˓Uri("http://services.odata.org/V4/Northwind/Northwind.svc")))
15 {
16 var employees = service.EntitySets[

→˓"Employees"];
17 employees.UpdatErpObject(new Dictionary

→˓<string, object>{{"EmployeeID", 66}},
18 new Dictionary<string, object> {

→˓{ "FirstName", "Franz" }, { "LastName", "VomBerg" } });
19 }
20 }
21 catch (WebRequestException e)
22 {
23 Console.WriteLine("Message: " + e.Message);
24 Console.WriteLine("Status Code: " + e.

→˓StatusCode);
25 Console.WriteLine("Body: " + e.RawResponse);
26 }
27 }
28 }
29 }
30

31 }
32

33 /* Console
34 Message: Not Implemented
35 Status Code: 501
36 Body: {"error":{"code":"","message":"Not Implemented"}}
37 */

See also

Reference

• powerGate.Erp.Client namespace

• Connect-ERP cmdlet

• Disonnect-ERP cmdlet

6.2.3 ErpClientSettings Class

Settings used to manipulate requests, timeouts etc. send by the client.
Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

6.2. .NET Library 113

powerGate

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.ErpClientSettings

Syntax

1 public class ErpClientSettings

The ErpClientSettings type exposes the following members.

Constructors

Type Description
ErpClientSettings() Initializes a new instance of the ErpClientSettings class.

Properties

Type Name Description
Uri BaseUri Gets or sets the service Url.

Ac-
tion<HttpResponseMessage>

AfterRe-
sponse

Gets or sets the action executed after the OData request.

Ac-
tion<HttpRequestMessage>

Befor-
eRequest

Gets or sets the action executed before the OData request.

Ac-
tion<HttpClientHandler>

OnAp-
plyClien-
tHandler

Gets or sets the action on HttpClientHandler.

Func<HttpMessageHandler>OnCre-
ateMessage-
Handler

Called before every request and the returned handler is used to send the the re-
quests. ATTENTION: If set, then ‘OnApplyClientHandler’ will not be called
anymore!

ICredentials Credentials Get or set the credentials to connect with the services.
TimeSpan Request-

Timeout
Gets or sets the time period to wait before the request times out.

PreferredUp-
dateMethod

Pre-
ferredUp-
dateMethod

Gets or sets the HTTP method (PUT or MERGE) used for updating OData enti-
ties.

See also

Reference

• powerGate.Erp.Client namespace

114 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httpresponsemessage(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httprequestmessage(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httpclienthandler(v=vs.118).aspx
https://docs.microsoft.com/en-us/previous-versions/visualstudio/hh138091%28v%3dvs.118%29
https://msdn.microsoft.com/en-us/library/system.net.icredentials%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-Us/library/system.timespan(v=vs.110).aspx

powerGate

6.2.4 ErpObject Class

Provides the data for the ERP entity.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
System.Collections.Generic.Dictionary<string,object>
powerGate.Erp.Client.ErpObject

Syntax

1 public class ErpObject : Dictionary<string, object>

The ErpObject type exposes the following members.

Properties

Type Name Description
IErpEntityType EntityType Gets the EntityType of the ErpObject.

Methods

Type Name Description
Dictionary<string, ob-
ject>

GetKeys() Returns only the Key properties of the Entity.

Dictionary<string, ob-
ject>

GetProper-
ties()

Returns the properties and navigation properties (except Key properties)
of the Entity.

Remarks

The GetKeys() function returns a Dictionary of Key properties with its values which uniquely identifies the Entity.
The GetProperties() function returns a Dictionary of properties and navigation properties (except Key properties) of
the Entity.

Readonly Results

The GetKeys() and the GetProperties() function result can not be modified!
Instead modifications on the ErpObject will be returned by both methods.

6.2. .NET Library 115

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx

powerGate

See also

Reference

• powerGate.Erp.Client namespace

6.2.5 IErpClient Interface

Provides the base interface for the ErpClient class.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IErpClient : IDisposable

Properties

Type Name Description
IErpServices Services Gets the list of connected services.

Methods

Type Name Description
IErpSer-
vice

Con-
nectErp(ConnectionSettings
connectionSettings)

Creates a connection to a service using the specified ConnectionSettings.

void Dispose() Performs application-defined tasks associated with freeing, releasing, or
resetting unmanaged resources.(Inherited from IDisposable.aspx).)

Extension Methods

Type Name Description
IErpSer-
vice

ConnectErp(Uri service = null, ICredentials credentials = null,
bool ignoreCertificates = false, Action<ErpClientSettings> on-
Connect = null)

Overloaded. Creates a connection to a
service using the specified parameter
values.

116 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110

powerGate

See also

Reference

• powerGate.Erp.Client namespace

6.2.6 IErpEntitySet Interface

Provides the interface for working with an EntitySet: Adding, Getting, Updating and/or Removing entities.

: \

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IErpEntitySet

Properties

Type Name Description
IErpEntity-

Type
EntityType Gets the EntityType of the EntitySet.

IMediaRe-
sources

MediaResources Gets the instance of IMediaResources to Add, Get and/or Update Medi-
aResources.

string Name The name of the EntitySet.
IErpService Service Gets the service of the EntitySet.
bool SupportMediaRe-

sources
Indicates whether the EntitySet supports MediaResources.

Methods

Type Name Description
ErpObject AddErpObject(Dictionary<string,object> proper-

ties)
Creates a new ErpObject for the EntitySet in
the ERP-System.

ErpObject GetErpObject(SearchOptions options) Retrieves the specified ErpObject from the
ERP-System

IEnumer-
able<ErpObject>

GetErpObjects(QueryOptions options) Searches for ErpObject’s depending on the
passed options in the ERP-System.

void RemoveErpObject(Dictionary<string,object>
keys)

Removes the specified ErpObject from the
EntitySet in the ERP-System.

ErpObject UpdatErpObject(Dictionary<string,object> keys,
Dictionary<string,object> properties)

Updates the specified ErpObject for the En-
titySet in the ERP-System.

6.2. .NET Library 117

powerGate

Extension Methods

Type Name Description
ErpOb-

ject
GetErpObject(Dictionary<string,object> keys, IEnumer-
able<string> expand = null, IEnumerable<string> select =
null)

Overloaded. Retrieves the specified Er-
pObject from the ERP-System using the
specified parameter values.

IEnumer-
able<ErpObject>

GetErpObjects(string filter = null, int top = 0, IEnumer-
able<string> expand = null, IEnumerable<string> select =
null, IEnumerable<OrderBy> orderBy = null)

Overloaded. Searches for ErpObject’s
from the ERP-System using the speci-
fied parameter values.

Exceptions

In case of an invalid request the above methods will throw a WebRequestException.

Remarks

The property MediaResources con only be used on EntitySets that are supporting streaming.

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Add a new ErpObject

1 using System;
2 using System.Collections.Generic;
3 using powerGate.Erp.Client;
4

5 namespace EntitySetSample {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 using (var erpclient = new ErpClient())
11 {
12 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/OData/OData.svc")))
13 {
14 var products = service.EntitySets["Products"];
15 //Add a new ErpObject
16 var orangeJuice = products.AddErpObject(new␣

→˓Dictionary<string, object>
17 {
18 {"ID", 5},
19 {"Name", "Orange Juice"},
20 {"Description", "The original Orange␣

→˓Juice. Refreshing!"},
21 {"ReleaseDate", "2006-08-04T00 ,00 ,00Z"}

→˓,
22 {"DiscontinuedDate", null},

(continues on next page)

118 Chapter 6. Code Reference

http://services.odata.org

powerGate

(continued from previous page)

23 {"Rating", 3},
24 {"Price", 22.8}
25 });
26 Console.Write("Created new Product: {0}",␣

→˓orangeJuice["Name"]);
27 }
28 }
29 }
30 }
31 }

Get a specific ErpObject

1 using System;
2 using System.Collections.Generic;
3 using powerGate.Erp.Client;
4

5 namespace EntitySetSample {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 using (var erpclient = new ErpClient())
11 {
12 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V4/Northwind/Northwind.svc")))
13 {
14 var categories = service.EntitySets["Categories

→˓"];
15 //Get the customer with ID CACTU
16 var category = categories.GetErpObject(new␣

→˓SearchOptions
17 {
18 Keys = new Dictionary<string, object> {

→˓{ "CategoryID", 1 } },
19 Expand = new[] { "Products" },
20 Select = new[] { "CategoryID" }
21 });
22 Console.Write("Category ID: {0}", category[

→˓"CategoryID"]);
23 }
24 }
25 }
26 }
27

28 }

Search for ErpObject’s with a filter

1 using System;
2 using System.Collections.Generic;
3 using powerGate.Erp.Client;

(continues on next page)

6.2. .NET Library 119

powerGate

(continued from previous page)

4

5 namespace EntitySetSample {
6

7 class Program
8 {
9 static void Main(string[] args)

10 {
11 using (var erpclient = new ErpClient())
12 {
13 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/Northwind/Northwind.svc/")))
14 {
15 var customers = service.EntitySets["Customers"];
16 //Get all customers with a company starting with

→˓'A'
17 var foundCustomers = customers.

→˓GetErpObjects(filter: "startswith(CompanyName,'A')");
18 foreach (var customer in foundCustomers)
19 Console.Write("Customer {0} with Company

→˓{1}", customer["CustomerID"], customer["CompanyName"]);
20 }
21 }
22 }
23 }
24

25 }

Remove an ErpObject

1 using System;
2 using System.Collections.Generic;
3 using powerGate.Erp.Client;
4

5 namespace EntitySetSample {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 using (var erpclient = new ErpClient())
11 {
12 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/OData/OData.svc")))
13 {
14 var products = service.EntitySets["Products"];
15 //Remove Product with ID '1'
16 products.RemoveErpObject(new Dictionary<string,␣

→˓object> { { "ID", 1 } });
17 }
18 }
19 }
20 }
21

(continues on next page)

120 Chapter 6. Code Reference

powerGate

(continued from previous page)

22 }

Update an ErpObject

1 using System;
2 using System.Collections.Generic;
3 using powerGate.Erp.Client;
4

5 namespace EntitySetSample {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 using (var erpclient = new ErpClient())
11 {
12 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/OData/OData.svc")))
13 {
14 var products = service.EntitySets["Products"];
15 //Get Product to update
16 var product = products.GetErpObject(new␣

→˓Dictionary<string, object> { { "ID", 9 } });
17 //Updating Rating and Price properties
18 var updatedProduct = products.

→˓UpdatErpObject(product.GetKeys(), new Dictionary<string, object> { { "Rating", 9 }, {
→˓"Price", 1.99 } });

19 Console.Write("New Price: {0}", updatedProduct[
→˓"Price"]);

20 }
21 }
22 }
23 }
24

25 }

See also

Reference

• powerGate.Erp.Client namespace

• Add-ERPObject cmdlet

• Get-ERPObject cmdlet

• Get-ERPObjects cmdlet

• Remove-ERPObject cmdlet

• Update-ERPObject cmdlet

6.2. .NET Library 121

powerGate

6.2.7 IErpEntitySets Interface

Provides the interface for working with a list of EntitySets.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IErpEntitySets : IEnumerable<IErpEntitySet>

Properties

Type Name Description
IErpEntitySet Item[string name] Gets the EntitySet with the specified name.

Methods

Type Name Description
IEnumer-

able<IErpEntitySets>
Find(string entity-
TypeName)

Searches for EntityTypes having the specified name.

IEnumera-
tor<IErpEntitySets>

GetEnumerator() Returns an enumerator that iterates through the collec-
tion.(Inherited from IEnumerable<T>).

See also

Reference

• powerGate.Erp.Client namespace

• Get-ERPEntitySets cmdlet

6.2.8 IErpEntityType Interface

Provides the interface holding data about the EntityType.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

122 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

powerGate

Syntax

1 public interface IErpEntityType

Properties

Type Name Description
IErpEntitySet EntitySet Gets the EntitySet of the EntityType.
IErpService Service Gets the EntitySet of the Service.
string Name The name of the EntityType.
string Namespace The namespace of the EntityType.
IErpProperties Keys Gets the Key properties which uniquely identifies the Entity-

Type.
IErpProperties Properties Gets the properties for the EntityType.

IErpNavigationProper-
ties

Navigationproper-
ties

Gets the navigation properties for the EntityType.

Methods

Type Name Description
Er-

pOb-
ject

NewEr-
pObject()

Creates a new and empty ErpObject instance of the current EntityType. The properties
will be filled with the default values.

Remarks

The property EntitySet returns the EntitySet where this EntityType is assigned to. Some EntityTypes are not assigned
to an EntitySet an the property will return Null for them.

The NewErpObject() creates a new ErpObject instance of the current EntityType, by analyzing the $metadata for
required and optional Properties and NavigationProperties.
The properties will be filled with the default values (see __DefaultValue__ in Property). For nullable properties (see
IsNullable in Property) the value will be null.
For NavigationProperties with a target Multiplicity of One, the function is able to create the required target instance as
well (recursive on multiple levels).
NavigationProperties can therefore safely be casted to type ErpObject or type Dictionary<string,object> (or IEnumer-
able of the described Type when they are collections).

6.2. .NET Library 123

powerGate

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Create a new empty ErpObject instance

1 using System;
2 using powerGate.Erp.Client;
3

4 namespace EntityTypeSample {
5 class Program
6 {
7 static void Main(string[] args)
8 {
9 using (var erpclient = new ErpClient())

10 {
11 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/Northwind/Northwind.svc")))
12 {
13 //Get the Territory EntityType
14 var entityType = service.EntityTypes[

→˓"NorthwindModel.Territory"];
15 //Create a new empty ErpObject instance from the␣

→˓Territory EntityType
16 var territory = entityType.NewErpObject();
17 Console.Write("Region ID: {0}", territory[

→˓"RegionID"]);
18 }
19 }
20 }
21 }
22 }

See also

Reference

• powerGate.Erp.Client namespace

• New-ERPObject cmdlet

6.2.9 IErpEntityTypes Interface

Provides the interface for working with a list of EntityTypes.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

124 Chapter 6. Code Reference

http://services.odata.org

powerGate

Syntax

1 public interface IErpEntityTypes : IEnumerable<IErpEntityType>

Properties

Type Name Description
IErpEntityType Item[string name] Gets the EntityType with the specified name.

Methods

Type Name Description
IEnumer-

able<IErpEntityType>
Find(string entity-
TypeName)

Searches for EntityTypes having the specified name.

IEnumera-
tor<IErpEntityType>

GetEnumerator() Returns an enumerator that iterates through the collec-
tion.(Inherited from IEnumerable<T>).

Remarks

The Item[] property and Find() function are supporting to pass additionaly parts of the namespace (e.g. Northwind-
Model.Territory instead of Territory).

See also

Reference

• powerGate.Erp.Client namespace

• Get-ERPEntityTypes cmdlet

6.2.10 IErpNavigationProperties Interface

Provides the interface for working with a list of NavigationProperties.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

6.2. .NET Library 125

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

powerGate

Syntax

1 public interface IErpNavigationProperties : IEnumerable<NavigationProperty>

Properties

Type Name Description
NavigationProperty Item[string name] Gets the NavigationProperty with the specified name.

Methods

Type Name Description
IEnumera-

tor<NavigationProperty>
GetEnumer-
ator()

Returns an enumerator that iterates through the collection.(Inherited
from IEnumerable<T>).

See also

Reference

• powerGate.Erp.Client namespace

6.2.11 IErpProperties Interface

Provides the interface for working with a list of ERP Properties.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IErpProperties : IEnumerable<Property>

Properties

Type Name Description
Property Item[string name] Gets the Property with the specified name.

126 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

powerGate

Methods

Type Name Description
IEnumera-

tor<Property>
GetEnumera-
tor()

Returns an enumerator that iterates through the collection.(Inherited from
IEnumerable<T>).

See also

Reference

• powerGate.Erp.Client namespace

6.2.12 IErpService Interface

Provides the interface for working with an ERP Service.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IErpService : IDisposable

Properties

Type Name Description
IErpEntitySets EntitySets Gets the EntitySets of the service.
IErpEntityTypes EntityTypes Gets all the EntityTypes of the service.
bool IsAvailable Indicates whether the service is available.
string Name The name of the service.
Uri Url The Url of the service.

Methods

Type Name Description
void Dis-

pose()
Disconnects the service from the ErpClient. Also Performs application-defined tasks associated with
freeing, releasing, or resetting unmanaged resources.(Inherited from IDisposable.)

6.2. .NET Library 127

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110).aspx

powerGate

Remarks

When calling Dispose() the service is disconnected from the ErpClient.
If the service is a CatalogService, the CatalogService and all its known services get disconnected.

See also

Reference

• powerGate.Erp.Client namespace

• Get-ERPServices cmdlet

6.2.13 IErpServices Interface

Provides the interface for working with a collection of ERP Services.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IErpServices : IEnumerable<IErpService>

Properties

Type Name Description
IErpService Item[Uri url] Gets the service with the specified Uri.
IErpService Item[string url] Gets the service with the specified url as string.

Methods

Type Name Description
IEnumerable

<IErpService>
Find(string servi-
ceName)

Searches for services having the specified serviceName.

IEnumerator
<IErpService>

GetEnumerator() Returns an enumerator that iterates through the collection.(Inherited
from IEnumerable<T>).

128 Chapter 6. Code Reference

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

powerGate

Remarks

The Item[] property and Find() function are supporting to pass only parts of the service Url (e.g. MaterialService
instead of http://localhost:8080/PGS/ERP/MaterialService).)

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes.

Get service by url

1 //ErpClient already connected to Odata services
2 var service = erpclient.Services[new Uri("http://services.odata.org/V4/Northwind/

→˓Northwind.svc")]
3 Console.Write("Service: {0}", service.Name);

Find service by name

1 //ErpClient already connected to powerGateServer Catalogservice
2 var services = erpclient.Services.Find("MaterialService");
3 foreach (IErpService service in services)
4 Console.Write("Service: {0}", service.Name);

See also

Reference

• powerGate.Erp.Client namespace

• Get-ERPServices cmdlet

6.2.14 IMediaResources Interface

Provides the interface for working with MediaResources: Adding, Getting and/or Updating -ErpMedias.

Namespace: powerGate.Erp.Client\ Assembly: powerGate.Erp.Client.dll

Syntax

1 public interface IMediaResources

Properties

Type Name Description
IErpEntitySet EntitySet Gets the EntitySet of this MediaResources.

6.2. .NET Library 129

http://localhost:8080/PGS/ERP/MaterialService
http://services.odata.org

powerGate

Methods

Type Name Description
void GetErpMe-

dia(Dictionary<string,object>
keys, Stream
stream)

Downloads the Media Resource of an existing Media Link Entry (MLE) and writes it
to the passed Stream.

Er-
pOb-
ject

AddErpMe-
dia(MediaCreateOptions
options)

Creates a new Media Link Entry (MLE) with the request body containing the Media
Resource (MR) and the Content-Type header indicating its media type. In other words
it will create a streamable entity (Media Link Entry) and upload it together with the
specified file (Media Resource).

void UpdateErpMe-
dia(MediaUpdateOptions
options)

Updates the Media Resource of an existing Media Link Entry (MLE).

Extension Methods

Type Name Description
Er-

pOb-
ject

AddErpMedia(Stream data, Dictio-
nary<string,object> properties=null, string
contentType = “application/octet-stream”)

Overloaded. Creates a new Media Link Entry (MLE) with
the request body containing the Media Resource (MR) us-
ing the specified parameter values.

void UpdateErpMedia(Dictionary<string, object>
keys, Stream data, string contentType =
“application/octet-stream”)

Overloaded. Updates the Media Resource of an existing
Media Link Entry (MLE) using the specified parameter
values.

Exceptions

In case of an invalid request the above methods will throw a WebRequestException.

Remarks

The GetErpMedia(. . .) function copies the downloaded binary data into the passed Stream object, and therefore the
Stream needs to be writable.
For Streams that support seeking, the position is automatically set to starting position in order to directly allow reading
it’s content.

The CreateErpMedia(. . .) and UpdateErpMedia(. . .) functions reading and uploading the binary data from the
passed Stream object, and therefore the Stream has to be readable.

130 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.io.stream%28v=vs.110%29.aspx
http://www.odata.org/documentation/odata-version-2-0/operations
http://www.odata.org/documentation/odata-version-2-0/operations
http://www.odata.org/documentation/odata-version-2-0/operations
http://www.odata.org/documentation/odata-version-2-0/operations
http://www.odata.org/documentation/odata-version-2-0/operations
https://msdn.microsoft.com/en-us/library/system.io.stream.canwrite(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.stream.canseek(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.stream.canread(v=vs.110).aspx

powerGate

Examples

In the following examples we are using public OData Services (http://services.odata.org) for demonstration purposes:

Download ErpMedia

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using powerGate.Erp.Client;
5

6 namespace MediaResourcesSample {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 using (var erpclient = new ErpClient())
12 {
13 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/OData/OData.svc")))
14 {
15 var advertisments = service.EntitySets[

→˓"Advertisements"];
16 //Check if the EntitySet supports MediaResources
17 if (advertisments.SupportsMediaResources)
18 using(var downloadData = new FileStream(@

→˓"C:\Temp\DownloadedFile.txt", FileMode.Create,FileAccess.Write))
19 {
20 //Download MediaResource
21 advertisments.MediaResources.

→˓GetErpMedia(new Dictionary<string, object> { { "ID", Guid.Parse("db2d2186-1c29-4d1e-
→˓88ef-a127f521b9c6") } }, downloadData);

22 }
23 }
24 }
25 }
26 }
27

28 }

Add a new ErpMedia

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using powerGate.Erp.Client;
5

6 namespace MediaResourcesSample {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 using (var erpclient = new ErpClient())
12 {

(continues on next page)

6.2. .NET Library 131

http://services.odata.org

powerGate

(continued from previous page)

13 using (var service = erpclient.ConnectErp(new Uri("http:/
→˓/services.odata.org/V3/OData/OData.svc")))

14 {
15 var advertisments = service.EntitySets[

→˓"Advertisements"];
16 //Check if the EntitySet supports MediaResources
17 if (advertisments.SupportsMediaResources)
18 using(var uploadData = File.OpenRead(@

→˓"C:\Temp\TestMedia.txt"))
19 {
20 var mediaCreateOptions = new␣

→˓MediaCreateOptions
21 {
22 Data = uploadData ,
23 ContentType = "text/plain

→˓",
24 Properties = new␣

→˓Dictionary<string, object> { { "Name", "My new Advertisment, Yeaahh!" } }
25 };
26 //Create a new Media Link Entry␣

→˓with a MediaResource
27 var newAdvertisment =␣

→˓advertisments.MediaResources.AddErpMedia(mediaCreateOptions);
28 Console.Write("Advertisment ID:

→˓{0}", newAdvertisment["ID"]);
29 }
30 }
31 }
32 }
33 }
34

35 }

Update existing ErpMedia

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using powerGate.Erp.Client;
5

6 namespace MediaResourcesSample {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 using (var erpclient = new ErpClient())
12 {
13 using (var service = erpclient.ConnectErp(new Uri("http:/

→˓/services.odata.org/V3/OData/OData.svc")))
14 {
15 var advertisments = service.EntitySets[

→˓"Advertisements"];
(continues on next page)

132 Chapter 6. Code Reference

powerGate

(continued from previous page)

16 //Check if the EntitySet supports MediaResources
17 if (advertisments.SupportsMediaResources)
18 using(var uploadData = File.OpenRead(@

→˓"C:\Temp\TestMedia.txt"))
19 {
20 //Update MediaResource of Media␣

→˓Link Entry
21 advertisments.MediaResources.

→˓UpdateErpMedia(
22 keys: new Dictionary

→˓<string, object> { { "ID", Guid.Parse("f89dee73-af9f-4cd4-b330-db93c25ff3c7") } },
23 data: uploadData);
24 }
25 }
26 }
27 }
28 }
29 }

See also

Reference

• powerGate.Erp.Client namespace

• Add-ERPMedia cmdlet

• Get-ERPMedia cmdlet

• Update-ERPMedia cmdlet

6.2.15 MediaCreateOptions Class

Specifies options to use for creating Media Resources.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.MediaCreateOptions

6.2. .NET Library 133

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerGate

Syntax

1 public class MediaCreateOptions

The MediaCreateOptions type exposes the following members.

Constructors

Name Description
MediaCreateOptions() Initializes a new instance of the MediaCreateOptions class.

Properties

Type Name Description
string Content-

Type
Specifies the content type of the HTTP request.

Stream Data Stream of Data to upload to the ERP System.
Dictionary<string,

object>
Proper-
ties

The properties for the entity beeing created. Those are passed as Slug-Header
to the ERP System.

Remarks

The ContentType is used to specify the nature of the Data being uploaded. With the appropriate content type the web
browser can open the Data with the proper extension/plugin.
If the content type contains text (e.g text/plain, text/html. . .) as type or json , xml (e.g application/json, applica-
tion/xml. . .) as subtype, then the content of the Data is uploaded to the server as UTF-8 Encoded text.

The Properties are passed as Slug-Header to the server, in the augmented BNF syntax.
Please note, that the field-values are passed in JSON-format (depending on the OData-version) to the server. The Slug
header is send as defined in Atom Publishing Protocol by encoding the data to UTF-8 and later using percent encoding
(for all octets outside the ranges %20-24 and %26-7E)!

Note: All Properties are formatted in following format: Property1='SomeText',Property2=666
This format is supported by SAP and powergateserver. Note that other ERP systems could expect data in different
format!

See also

Reference

• powerGate.Erp.Client namespace

134 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.io.stream%28v=vs.110%29.aspx
https://tools.ietf.org/html/rfc5023#page-30
https://tools.ietf.org/html/rfc5023#page-30
https://tools.ietf.org/html/rfc2616#section-2.1
https://tools.ietf.org/html/rfc5023#page-30
http://go.sap.com/
https://doc.coolorange.com/projects/powergateserver/en/stable/

powerGate

6.2.16 MediaUpdateOptions Class

Specifies options to use for updating Media Resources.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.MediaUpdateOptions

Syntax

1 public class MediaUpdateOptions

The MediaUpdateOptions type exposes the following members.

Constructors

Name Description
MediaUpdateOptions() Initializes a new instance of the MediaUpdateOptions class.

Properties

Type Name Description
Dictionary<string, ob-

ject>
Keys The reference properties for searching the item which uniquely identifies

the Entity.
string Content-

Type
Specifies the content type of the HTTP request.

Stream Data Stream of Data to upload to the ERP System.

Remarks

The ContentType is used to specify the nature of the Data being uploaded. With the appropriate content type the web
browser can open the Data with the proper extension/plugin.
If the content type contains text (e.g text/plain, text/html. . .) as type or json , xml (e.g application/json, applica-
tion/xml. . .) as subtype, then the content of the Data is uploaded to the server as UTF-8 Encoded text.

6.2. .NET Library 135

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.stream%28v=vs.110%29.aspx

powerGate

See also

Reference

• powerGate.Erp.Client namespace

6.2.17 Multiplicity Enumeration

Enumerates the multiplicities of navigation properties.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public enum Multiplicity

Members

Member name Description
OneToOne The Multiplicity of the association ends is one to one.
OneToZeroOrOne The Multiplicity of the association ends is one to zero or one to one.
ZeroOrOneToOne The Multiplicity of the association ends is zero to one or one to one.
OneToMany The Multiplicity of the association ends is one to many.
ManyToOne The Multiplicity of the association ends is many to one.
ManyToMany The Multiplicity of the association ends is many to many.
ManyToZeroOrOne The Multiplicity of the association ends is many to zero or many to one.
ZeroOrOneToZeroOrOne The Multiplicity of the association ends is zero or one to zero or one.
ZeroOrOneToMany The Multiplicity of the association ends is zero or one to many.

See also

Reference

• powerGate.Erp.Client namespace

6.2.18 NavigationProperty Class

Provides metadata informations about the NavigationProperty.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

136 Chapter 6. Code Reference

powerGate

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.Property
powerGate.Erp.Client.NavigationProperty

Syntax

1 public class NavigationProperty : Property

The NavigationProperty type exposes the following members.

Constructors

Name Description
NavigationProperty() Initializes a new instance of the NavigationProperty class.

Properties

Type Name Description
bool IsCollection Indicates whether the navigation property is a collection.
Multiplicity Multiplicity Gets the the multiplicity of the navigation property.
IErpEntityType TargetEntityType Gets the TargetEntityType of the navigation property.
string DefaultValue Gets the default value of the navigation property.
bool IsNullable Indicates whether the navigation property is nullable.
string DefaultValue Gets the name of the navigation property.
Type Type Gets the Type of the navigation property.

See also

Reference

• powerGate.Erp.Client namespace

6.2.19 OrderBy Class

Specifies options to use for ordering ERP entities.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

6.2. .NET Library 137

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.type%28v=vs.110%29.aspx

powerGate

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.OrderBy

Syntax

1 public class OrderBy

The OrderBy type exposes the following members.

Constructors

Name Description
OrderBy(string propertyName, OrderDirec-
tion? direction = null)

Initializes a new instance of the OrderBy class by passing the prop-
erty name that should be ordered.

Properties

Types Name Description
string PropertyName The property used to order a collection of entities.
OrderDirection? Direction Nullable. The order of a sequence (ascending or descending).

Remarks

When the OrderDirection property is not set, the entities are ordered in the direction defined on the Erp-side (this
should be ascending order by default).

See also

Reference

• powerGate.Erp.Client namespace

6.2.20 OrderDirection Enumeration

Specifies the order of a sequence (ascending or descending).

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

138 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerGate

Syntax

1 public enum OrderDirection

Members

Member name Description
Ascending The items are sorted in ascending order.
Descending The items are sorted in descending order.

See also

Reference

• powerGate.Erp.Client namespace

6.2.21 Property Class

Provides metadata informations about the Property.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.Property

Syntax

1 public class Property

The Property type exposes the following members.

Constructors

Name Description
Property() Initializes a new instance of the Property class.

6.2. .NET Library 139

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerGate

Properties

Type Name Description
string DefaultValue Gets the default value of the property.
bool IsNullable Indicates whether the property is nullable.
string DefaultValue Gets the name of the property.
Type Type Gets the Type of the property.

See also

Reference

• powerGate.Erp.Client namespace

6.2.22 QueryOptions Class

Specifies options to use for searching entities in ERP.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.QueryOptions

Syntax

1 public class QueryOptions

The QueryOptions type exposes the following members.

Constructors

Name Description
QueryOptions() Initializes a new instance of the QueryOptions class.

140 Chapter 6. Code Reference

https://msdn.microsoft.com/en-us/library/system.type%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerGate

Properties

Type Name Description
IEnumerable<string> Expand The Navigation property name(s) which should be expanded.
string Filter The OData filter which will be executed.

IEnumer-
able<OrderBy>

Or-
derBy

The order of the Item’s. They can be ordered by the property name and/or
direction.

IEnumerable<string> Select Specifiy the properties which should be explicitly requested and returned by
the client.

int Top The amount of items which should be returned.

Remarks

The Filter property allows you to specify a filter with OData syntax. More informations about the OData Filter syntax
can be found here.
The OrderBy property allows you to order the list of entities by property name(s) and/or direction (Ascending or
Descending).
The Expand property allows you to expand multiple navigation properties. By default, when the expand property is
not specified then most Erp-systems reurn the entity without navigation properties.
The Select property lets you receive only those properties which you want to have in the result.

See also

Reference

• powerGate.Erp.Client namespace

6.2.23 SearchOptions Class

Specifies options to use for retrieving a single entity from ERP.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
powerGate.Erp.Client.SearchOptions

Syntax

1 public class SearchOptions

The SearchOptions type exposes the following members.

6.2. .NET Library 141

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerGate

Constructors

Name Description
SearchOptions() Initializes a new instance of the SearchOptions class.

Properties

Type Name Description
Dictionary<string, ob-

ject>
Keys The reference properties for searching the item which uniquely identifies the

Entity.
IEnumerable<string> Ex-

pand
The Navigation property name(s) which should be expanded.

IEnumerable<string> Select Specifiy the properties which should be explicitly requested and returned by
the client.

Remarks

The Expand property allows you to expand multiple navigation properties. By default, when the expand property is
not specified then most Erp-systems reurn the entity without navigation properties.
The Select property lets you receive only those properties which you want to have in the result.

See also

Reference

• powerGate.Erp.Client namespace

6.2.24 UpdateMethod Enumeration

Specifies the HTTP method used for updating.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Syntax

1 public enum UpdateMethod

142 Chapter 6. Code Reference

powerGate

Members

Member name Description
MERGE Represents an HTTP MERGE protocol method that is used to update an entity.
PUT Represents an HTTP PUT protocol method that is used to update an entity.

See also

Reference

• powerGate.Erp.Client namespace

6.2.25 WebRequestException Class

The exception that is thrown when an error occurs while sending a request.

Namespace: powerGate.Erp.Client
Assembly: powerGate.Erp.Client.dll

Inheritance Hierarchy

System.Object
System.Exception
powerGate.Erp.Client.WebRequestException

Syntax

1 public class WebRequestException : Exception

The following members which allow to determine why the Web server response was not successful:

Properties

Type Name Description
string Mes-

sage
Gets a human-readable message that describes the current exception (Inherited from Sys-
tem.Exception).

string RawRe-
sponse

Gets the plain message body from the server response.

ob-
ject

Re-
sponse

Gets the error data from the OData response or null for generic HTTP error responses.

int Status-
Code

Gets the HTTP status code of the server response.

string Source Indicates in which part of the ERP integration the error was caused (by the “Local computer”,
“powerGateServer” or the “ERP system”). (Inherited from System.Exception).

string Stack-
Trace

Gets a string representation of the immediate frames on the call stack (provided by the powerGate-
Server Plugin or Erp system). (Inherited from System.Exception).

6.2. .NET Library 143

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/api/system.exception?redirectedfrom=MSDN&view=netframework-4.5
https://docs.microsoft.com/en-us/dotnet/api/system.exception?redirectedfrom=MSDN&view=netframework-4.5
https://docs.microsoft.com/en-us/dotnet/api/system.exception?redirectedfrom=MSDN&view=netframework-4.5
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://docs.microsoft.com/en-us/dotnet/api/system.exception?redirectedfrom=MSDN&view=netframework-4.5
https://docs.microsoft.com/en-us/dotnet/api/system.exception?redirectedfrom=MSDN&view=netframework-4.5

powerGate

Remarks

Exceptions of this type are thrown by the ErpClient, ErpEntitySet and MediaResources when requesting data from the
ERP Services.

The Message property returns the error message from within the OData response (the message of the most InnerError
is provided, when such data is available in the OData response).
For generic HTTP error responses a returned reason phrase provides further information about the nature of the problem.

The Response property provides access to the data within OData error responses (see OData v3 and OData v4):

• The property Message contains a human-readable representation of the error.

• ErrorCode returns a service-defined error code which serves as a sub-status for the HTTP StatusCode.

• InnerError data can be available and contains information that will help to debug the service.

See also

Reference

• powerGate.Erp.Client namespace

The powerGate .NET library contains a set of classes, interfaces, and value types that provide the functionality to
automate data synchronization with ERP systems.

The library supports:

• .Net Framework 4.7 or higher

• OData Version v1, v2, v3, v4.

The library tries to perform as less server requests as possible, in order to keep a high performance when commu-
nicating over the network or the internet.

Metadata

This means that e.g. the service metadata will be retrieved only when required, and only for the required services.

After retrieving metadata once, no further metadata request is required, because powerGate caches the server results!

144 Chapter 6. Code Reference

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP/1.1_response_messages
https://www.odata.org/documentation/odata-version-3-0/json-verbose-format/#representingerrorsinaresponse
http://docs.oasis-open.org/odata/odata-json-format/v4.01/odata-json-format-v4.01.html#_Toc38457793

powerGate

6.2.26 Classes

Class Description
ConnectionSettings Settings used to connect with the ERP Service.
ErpClientSettings Settings used to manipulate requests, timeouts etc. send by the client.
ErpClient Class used to connect with ERP services.
ErpObject Provides the data for the ERP entity.
MediaCreateOptions Specifies options to use for creating Media Resources.
MediaUpdateOptions Specifies options to use for updating Media Resources.
NavigationProperty Provides metadata informations about the NavigationProperty.
OrderBy Specifies options to use for ordering ERP entities.
Property Provides metadata informations about the Property.
QueryOptions Specifies options to use for searching entities in ERP.
SearchOptions Specifies options to use for retrieving a single entity from ERP.
SapConnect Class which provides prepared connection to use for connecting with SAP services.
WebRequestException The exception that is thrown when an error occurs while sending a request.

6.2.27 Interfaces

Interface Description
IErpClient Provides the base interface for the ErpClient class.
IErpEntitySet Provides the interface for working with an EntitySet: Adding, Getting, Updating and/or

Removing -ErpEntities.
IErpEntitySets Provides the interface for working with a list of EntitySets.
IErpEntityType Provides the interface holding data about the EntityType.
IErpEntityTypes Provides the interface for working with a list of EntityTypes.

IErpNavigation-
Properties

Provides the interface for working with a list of NavigationProperties.

IErpProperties Provides the interface for working with a list of ERP Properties.
IErpService Provides the interface for working with an ERP Service.
IErpServices Provides the interface for working with a list of ERP Services.
IMediaResources Provides the interface for working with MediaResources: Adding, Getting and/or Updating

-ErpMedias.

6.2.28 Enumerations

Enumeration Description
Multiplicity Enumerates the multiplicities of navigation properties.
OrderDirection Specifies the order of a sequence (ascending or descending).
UpdateMethod Specifies the HTTP method used for updating.

6.2. .NET Library 145

powerGate

6.3 UI Components

6.3.1 ERPComboBox

A WPF ComboBox control that automatically displays all configured list values for a bound ERP field.

Namespace: powerGate.UI.Components
Assembly: powerGate.UI.dll

Inheritance Hierarchy

ComboBox
powerGate.UI.Components.ERPComboBox

Syntax

<ERPComboBox SelectedValue="{Binding *}"/>

Properties

All properties inherited from ComboBox are available, whereby only the assignment of SelectedValue is required:

Prop-
erty

Usage Default value

Selected-
Value

Binding to an ERP field of Entity.The
value of this field is then selected by
default.

ItemsSource All list-values which are configured for the ERP field bound
in SelectedValue.

Select-
edVal-
uePath

‘Erp’ (the underlying ERP value controls the display, and
when selection changes, this ERP value is written back to the
Entity field)

Dis-
playMem-
berPath

‘Display’ (the configured Display Text is shown for the se-
lected value and dropdown items instead of the ERP values)

Verti-
calAlign-
ment

‘Center’

Padding 4

146 Chapter 6. Code Reference

https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.combobox?view=netframework-4.8.1
https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.combobox?view=netframework-4.8.1
https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.combobox?view=netframework-4.8.1
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/data/binding-declarations-overview?view=netframeworkdesktop-4.8

powerGate

Remarks

The control displays all configured ERP values for a given field or, if configured, their corresponding display texts.
This is allowed by the default values of ItemsSource and DisplayMemberPath.

In combination with New-ERPObject -VaultEntity, this combobox aids displaying the respective ERP value for the
mapped Vault Properties value.

SelectedValue

The control can only provide the above functionalities automatically when SelectedValue is bound to an ERP field
of an Entity returned by New-ERPObject -VaultEntity.

So the only requirement is a type mapping configuration between the ERP and Vault Entity type.
The customization development can also be continued without configured list-values. Once Possible Values are defined
for the Item creation, these become visible in the combobox dropdown.

In contrast to a regular WPF ComboBox, a clear error tooltip displays to the Vault user when the ERP field has a value
that is not available in its ItemsSource.

The list-values themselves are displayed in sorted order by default, allowing them to quickly find and pick the ERP
value of their choise.
If descending sorting is desired, the list-values can be ordered differently in the ERP Integration Settings dialog.

Warning: The ERPComboBox does not work correctly if the parent Window uses the SizeToContent attribute.
This is caused by a WPF bug that affects the Loaded event which is required internally for the ERPComboBox to
work.

Examples

Using a ERPComboBox requires an explicit XAML namespace declaration:
Assuming the StackPanel’s or ErpComboBox’s DataContext provides an Entity with a UOM property.

1 <StackPanel xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
2 xmlns:pg="clr-namespace:powerGate.UI.Components;assembly=powerGate.UI">
3 <pg:ERPComboBox SelectedValue="{Binding UOM}"/>
4 </StackPanel>

Displaying Configured List Values from another (custom) configuration section:
The ERPComboBox control in this example cannot automatically determine the configured list-values because:

• the assigned DataContext is not a New-ERPObject -VaultEntity result (because Inventor)

• the Vault admin has only configured the language codes once for the ERP type ‘Description’, but does not want
to configure an additional redundant ERP type mapping for ‘BasicDataText’

• instead of a simple field a currently unsupported navigation property is bound

$window = [Windows.Markup.XamlReader]::Load((New-Object System.Xml.XmlNodeReader @'
<Window Title="Inventor - Create ERP Item"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:pg="clr-namespace:powerGate.UI.Components;assembly=powerGate.UI">

<GroupBox Header="SAP Basic Data">
(continues on next page)

6.3. UI Components 147

https://learn.microsoft.com/en-us/dotnet/api/system.windows.window.sizetocontent?view=netframework-4.8.1
https://github.com/Microsoft/dotnet/issues/429

powerGate

(continued from previous page)

<StackPanel Orientation="Vertical">
...
<pg:ERPComboBox Name="LanguageComboBox"

SelectedValue="{Binding BasicData.BasicDataText.
→˓LanguageISO}" />

<TextBox Text="{Binding BasicData.BasicDataText.MatlDesc}" />
</StackPanel>

</GroupBox>
</Window>
'@))

programmatically set the ItemsSource to the configured list-value that are also used␣
→˓for Vault Items. Possible Language Codes are 'DE','IT','EN'
$vaultItem2SapDescription = $global:ERPSettings.GetTypeMapping('Item', 'material_srv.
→˓Description')
$languageCodeField = $vaultItem2SapDescription.FieldMappingsForCREATE | Where-Object { $_
→˓.ErpField -eq 'LanguageISO' }

$window.FindName('LanguageBasicTextComboBox').ItemsSource = $languageCodeField.
→˓ListValues # Possible Language Codes are 'DE','IT','EN'

$partNumber_iProperty = $document.PropertySets.Item('Design Tracking Properties')['Part␣
→˓Number']
$materialContext = New-ERPObject -EntityType 'material_srv.MaterialContext' -Properties @
→˓{ Material = $partNumber_iProperty.Value }
$materialContext.Description = @((New-ERPObject -EntityType 'material_srv.Description')␣
→˓)
$materialContext.BasicData = New-ERPObject -EntityType 'material_srv.BasicData' -
→˓Properties @{ BasicDataText = @() }
$materialContext.BasicData.BasicDataText += New-ERPObject -EntityType 'material_srv.
→˓BasicDataText'
$window.DataContext = $materialContext

Disable other control in case of a Data Error:
When the Entity field holds invalid data, an automatically assigned DataErrorValidationRule ensures that the control
shows these Validation.Errors:

1 <Grid xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
2 xmlns:pg="clr-namespace:powerGate.UI.Components;assembly=powerGate.UI">
3 <Grid.RowDefinitions>
4 <RowDefinition Height="Auto" />
5 <RowDefinition Height="*" />
6 </Grid.RowDefinitions>
7

8 <pg:ERPComboBox Name="Categories" SelectedValue="{Binding Category}" Grid.Row="0
→˓"/>

9

10 <TextBox Text="{Binding Inventory, ValidatesOnDataErrors=True}" Grid.Row="1"> <!-
→˓- error validation may also supported for other fields -->

11 <TextBox.Style>
12 <Style TargetType="{x:Type TextBox}">
13 <Setter Property="IsEnabled" Value="False" />

(continues on next page)

148 Chapter 6. Code Reference

https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.dataerrorvalidationrule?view=netframework-4.7
https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.validation.error?view=netframework-4.7

powerGate

(continued from previous page)

14 <Style.Triggers>
15 <MultiDataTrigger>
16 <MultiDataTrigger.Conditions>
17 <Condition Binding="{Binding␣

→˓ElementName=Categories, Path=(Validation.HasError)}" Value="False" />
18 ...
19 </MultiDataTrigger.Conditions>
20 <Setter Property="IsEnabled" Value="True

→˓" />
21 </MultiDataTrigger>
22 </Style.Triggers>
23 </Style>
24 </TextBox.Style>
25 </Button>
26 </Grid>

powerGate provides custom WPF components to simplify the implementation and customization of Tabs and dialogs
for ERP integrations.

6.3.2 Components

The following components are provided:

Component Description
ERPComboBox ComboBox pre-populated based on ERPIntegration Configuration

6.3. UI Components 149

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/?view=netframeworkdesktop-4.8

powerGate

150 Chapter 6. Code Reference

CHAPTER

SEVEN

LOGGING

powerGate uses Apache log4net as core logging library, and additionally PostSharp Diagnostics for extended Debug
logging.\

By default, all the logs are stored in a logfile located in ‘C:\Users\{USER}\AppData\Local\coolOrange\powerGate\Logs\powerGate.log’
and it contains only Warnings and Errors.
Perhaps you can find backups of previous logfiles in this directory.

The log4net settings file is located in C:\Program Files\coolOrange\Modules\powerGate\powerGate.log4net.
Further information about log4Net Configurations can be found here.

7.1 Log requests and responses

PowerGate has the opportunity to customize the format of the traced requests that are send to the server, and the received
responses.

7.1.1 Log Level

powerGate has a special logging level called TRAFFIC. In this level all requests and responses will be logged. The
level is located in the order between DEBUG and INFO, but you can even adjust this by changing the value ‘30001’
in these lines:

1 <level>
2 <name value="TRAFFIC" />
3 <value value="30001" />
4 </level>

In the following link you will find the default log levels associated with the numeric values they have at the bottom:
Level.cs

If you want to change the logging level for all appenders e.g. to “TRAFFIC”, please visit the root logger and change
the level in the lines:

1 <level value="TRAFFIC" />

you can configure the required logging level. You could set the level to “DEBUG”, than all the levels above Debug and
also Debug will be logged.

Note: When increasing the loglevel for the root logger, please make sure your favorite appenders minlevel is configured
to allow logging messages with the specified level.

151

https://logging.apache.org/log4net/
http://doc.postsharp.net/5.0/logging
https://logging.apache.org/log4net/release/manual/configuration.html
http://svn.apache.org/repos/asf/logging/log4net/tags/log4net-1_2_9/src/Core/Level.cs
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/

powerGate

7.1.2 When to change the logging behavior?

When you have issues or when you want to get a more detailed knowledge about what powerGate is doing, you can
increase the logging level.

Note: When changing the loglevel to DEBUG PostSharp Diagnostics will be enabled and will log all the function
calls into the log files. This could cause performance issues

Additionally you can change the logfile location or integrate the logging mechanism into your administrative environ-
ment by using build in EventLogMessages etc.

7.1.3 TrafficPatternLayout

Each appender has its own layout that defines how the log-messages are formatted. By using the special Layout pow-
erGate.Erp.Client.Traffic.TrafficPatternLayout you have the possibility to configure two new ConverstionPatterns:
RequestConversionPattern, ResponseConversionPattern.

The TrafficPatternLayout has all the functionality of a simple PatternLayout too. That means all logs that are not
Requests or Responses can be configured by using the default ConversionPattern node.
Therefore all the available conversion pattern names from PatternLayout are available for the TrafficPatternLayout too.

7.1.4 RequestConversionPattern

This pattern applies when a request gets logged and additionally you have access to following options:

1 %Request{Protocol}
2 %Request{ProtocolVersion}
3 %Request{Method}
4 %Request{Url}
5 %Request{Headers}
6 %Request{Body}

For instance you are able to log something like this:

1 <RequestConversionPattern value="Called: %Request{Method}% on %Request{Url}" />

This will result in logs like:
Called: GET on localhost:8080/pgs/ERP/MaterialService/Materials

7.1.5 ResponseConversionPattern

This pattern applies when a response gets logged and additionally you have access to following options:

1 %Response{Protocol}
2 %Response{ProtocolVersion}
3 %Response{StatusCode}
4 %Response{Status}
5 %Response{Headers}
6 %Response{Body}

For instance you are able to log something like this:

152 Chapter 7. Logging

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/
http://doc.postsharp.net/5.0/logging
https://logging.apache.org/log4net/log4net-1.2.13/release/sdk/log4net.Layout.PatternLayout.html
https://logging.apache.org/log4net/log4net-1.2.13/release/sdk/log4net.Layout.PatternLayout.html

powerGate

1 <ResponseConversionPattern value="Received: %Response{StatusCode}% %Response{Status}" />

This will result in logs like:
Received: 200 OK

7.2 LogFile

You can see, that there are multiple logging-Appenders used. If you want to change the logging level in the logfile,
please visit following appender:

1 <appender name="FileAppender" type="log4net.Appender.RollingFileAppender">

In the lines

1 <filter type="log4net.Filter.LevelRangeFilter">
2 <levelMin value="WARN" />
3 <levelMax value="FATAL" />
4 </filter>

you can configure the logginglevel. You could set the minimal filter level to “DEBUG”, than all the levels between the
range Debug and Fatal will be logged.

In the line

1 <param name="File" value="${LOCALAPPDATA}\coolOrange\powerGate\Logs\powerGate.log" />

you can configure the outputpath and name of the logfile.

7.3 PowerShell IDE

PowerShell IDE’s like PowerShell console (and PowerShell ISE) are configured to show the logging levels in a different
color.

38 <mapping>
39 <level value="DEBUG" />
40 <foreColor value="Black" />
41 <backColor value="White" />
42 </mapping>
43 <mapping>
44 <level value="TRAFFIC" />
45 <foreColor value="Black" />
46 <backColor value="White" />
47 </mapping>
48 <mapping>
49 <level value="INFO" />
50 <backColor value="DarkGreen" />
51 </mapping>
52 <mapping>
53 <level value="WARN" />
54 <backColor value="DarkYellow" />
55 </mapping>

(continues on next page)

7.2. LogFile 153

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/

powerGate

(continued from previous page)

56 <mapping>
57 <level value="ERROR" />
58 <backColor value="Red" />
59 </mapping>
60 <mapping>
61 <level value="FATAL" />
62 <backColor value="DarkRed" />
63 </mapping>

These and many other options can be configured in the appender named ColoredConsoleAppender.

154 Chapter 7. Logging

CHAPTER

EIGHT

CHANGE LOGS

8.1 powerGate v24

8.1.1 v24.0.15

20-03-2024

Fixed

• Issue in the ERP Integration Settings dialog where changes to list values for ERP fields were not saved when
Vault Data Standard (VDS) is installed.

• Display problem in the ERP Integration Settings dialog where changing the Vault Entity Type caused the selected
value to disappear.

8.1.2 v24.0.14

06-03-2024

General

• Updated powerEvents to version: 24.0.12
This fixes occasional issues with Sample.ConnectToERP scripts on Vault 2021 environments, where the Vault
Client may freeze on login.

8.1.3 v24.0.13

23-02-2024

Features

• The ERP Integration Settings dialog now allows to configure a list of values that are allowed for individual ERP
fields, when creating Items in ERP.
Especially for the manual Item creation, this makes it easy to control which values are displayed in selection lists.
And this also applies if some ERP values don’t directly match the data in Vault.

• New UI component: ERPComboBox

– displays all the configured list values for the bound ERP field

– shows the configured DefaultValue if no ERP Item exists

– clear error display if no suitable ERP value is configured for the mapped Vault property

General

155

https://doc.coolorange.com/projects/powerevents/en/stable/change_logs/powerevents_v24/#v24-0-12

powerGate

• Sample “ERP Item” tabs now display the list values in their UnitOfMeasure comboboxes, which are configured
in the ERP Integration Settings dialog.
(Sample.Tab-ErpItem.xaml and Sample.ErpItemCreate.xaml)

• The sample BOM Window “Item Transfer” now also takes these list value configurations into account.
(Sample.Tab-File-ErpBom and Sample.Tab-Item-ErpBom scripts)

• Removed sample script Sample.ManagePowerGateConfiguration.ps1 and the associated configuration file
Sample.PowerGateConfiguration.xml, because these are no longer relevant after the changes described above.
(Sample.Menu-Inventor-CreateErpItem.ps1 hard-codes the original GetPowerGateConfiguration
'UnitOfMeasures' configuration)

• Updated powerEvents to version: 24.0.11
This fixes possible performance problems caused by too frequent Connect-ERP calls during Vault Client or
Inventor startup, especially when connecting multiple slow ERP services.

Fixed

• Failing ERP item creation when mapping Vault Enum Properties such as Classification, Visualization Attach-
ment, Property Compliance or File Link State.
The issue was caused by New-ERPObject returning a non-transferable Autodesk.
PropertyDefinition+EnumeratedValue object instead of the underlying Vault value.

• Incorrect error displays in the ERP Integration Settings dialog, when mapping numeric Vault Properties to num-
ber fields

8.1.4 v24.0.9

16-01-2024

Features

• The ERP Integration Settings dialog now allows to configure via mappings, how Items are created in ERP.
For individual fields, it is now possible to specify whether data from Vault properties or fixed-values should to
be transferred.

• Extended New-ERPObject with a -VaultEntity parameter that converts passed powerVault Entities to the
corresponding ERP format, based on the configured mappings

General

• Sample “ERP Item” tabs and the BOM Window “Item Transfer” also take these mapping configurations into
account.
(Sample.Tab-File-ErpItem, Sample.Tab-Item-ErpItem, Sample.Tab-File-ErpBom and Sample.Tab-Item-ErpBom
scripts)

• Removed default <PropertyMappings> for Vault Files and Items from Sample.PowerGateConfiguration.xml.
During evaluation they can now be configured directly via the ERP Integration Settings dialog (see
$ErpSettings.TypeMappings)

• UI improvements in the ERP Integration Settings dialog:

– a red border clearly indicates that connection settings are missing or mappings are erroneous, e.g. if a Vault
property or an ERP field was removed or renamed or when the mapped value types do not match.

– a wait cursor is displayed while saving.

• Updated powerJobs Client to version: 24.0.5

– This fixes compatibility issues with the LoginVault_Post event of the Sample.ConnectToERP script, where
now also Vault Properties are retrieved for display in the ERP Integration Settings dialog.

156 Chapter 8. Change logs

https://doc.coolorange.com/projects/powerevents/en/stable/change_logs/powerevents_v24/#v24-0-11
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powerjobsclient/en/stable/change_logs/powerjobsClient_v24/#v24-0-5
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/objects/event_mappings/connection_events/loginvault/

powerGate

– In addition, the included powerVault version 24.0.7 solves the Show-Inspector issue where no Inspector
window opened within BOM Window functions

Fixed

• Vault Client crash when invalid characters are entered as powerGateServer Host Name in the ERP Integration
Settings dialog

• Display problems in the ERP Integration Settings dialog, which did not show connection settings in some excep-
tional situations:

– during evaluation the used Demo ERP system was unfortunately only displayed on first opening

– after manually importing a powerGate.settings file into Vault, the current settings are now displayed im-
mediately, even without logging into Vault again

8.1.5 v24.0.7

05-10-2023

Features

• A new ERP Integration Settings dialog allows Vault administrators to configure ERP services on a Vault-wide
basis.
This enables all common powerGateServer situations as well as direct OData connections to be easily set up.

• The Sample.ConnectToERP script automatically connects to all these configured services when logging into the
respective Vault in Vault Client and Inventor

• Extended Connect-ERP with a -UseSettingsFromVault parameter, which e.g. makes this easily possible also
on the Job Processor

General

• Renamed sample script Sample.ConnectToPowerGateServer.ps1 to Sample.ConnectToERP.ps1

• Instead of the Sample.ManagePowerGateConfiguration script, now the Sample.ConnectToERP script adds a
Tools menu item to the Vault Client for opening the current Vault - ERP Integration Settings

Fixed

• Issue in the BOM Window where context menu buttons to select/unselect disappeared when custom display
scaling settings are used

8.1.6 v24.0.5

11-08-2023

General

• Updated Licensing to version: 18.3.1

• Updated powerEvents to version: 24.0.4

– This solves the problem where changes to ERP integration scripts being incorrectly reloaded on MTA
background threads, resulting in a smoother debugging and development experience:
Connection Error Dialogs are displayed again if problems occur with new changes in such scripts.

– Changes can now be saved even while modal dialogs are open. It is no longer necessary to restart the Vault
Client if, for example, Error Message Boxes, Connection Error Dialog, BOM Windows, Inspector dialogs
or simple Message Boxes are displayed.
Advantageously, for scripts based on our ERP BOM tab samples, changes in BOM Window functions now

8.1. powerGate v24 157

https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v24/#v24-0-7
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/show-inspector/
https://support.microsoft.com/en-us/windows/view-display-settings-in-windows-37f0e05e-98a9-474c-317a-e85422daa8bb
https://support.microsoft.com/en-us/windows/view-display-settings-in-windows-37f0e05e-98a9-474c-317a-e85422daa8bb
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-3-1
https://doc.coolorange.com/projects/powerevents/en/stable/change_logs/powerevents_v24/#v24-0-4
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/objects/host/#automatic-script-reloading
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/#errors
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/show-inspector/

powerGate

take effect immediately without the need to re-open the window, reloading tab contents, or waiting for any
Check-operations to complete.

– In addition, all sample ERP integration files are now installed in %ProgramData%\coolOrange\Client Cus-
tomizations.

Breaking Changes

Change paths in Customization distribution mechanisms

Please note that the simplification of the folder structure for Client Customizations may require adjusting paths
in automatic distribution mechanisms (e.g. setups or IT tools).
For more details, see the “Breaking Change” section in powerEvents v24.0.4

Fixed

• Issue in sample scripts for ERP BOM tabs where failed BOM row creations were incorrectly marked as success-
fully transferred in the BOM Window.
BOMs are now again created with deep-create, which ensures that they are transferred as a whole and marked as
erroneous, even if there are problems with the creation of individual BOM rows.

Note: For ERP interfaces implemented with a ERP BOM tab based on v24.0.3 or v24.0.4, it is recommended
to update the section for creating BOM headers and rows in the Transfer-Boms function.

8.1.7 v24.0.4

30-05-2023

Fixed

• Issue in sample script for Inventor Menu item “Create/Update ERP Item” and Inventor Menu item “Link ERP
Item” where the parent assembly was used when a part or assembly was opened within an opened assembly

8.1.8 v24.0.3

28-05-2023

Features

• The user interface for the “ERP Item” and “ERP BOM” tabs in the Vault Client have been redesigned

• Added “Link ERP Item” tabs for searching and linking an existing ERP Item to a selected Vault File or a Vault
Item

• Added “Create/Update ERP Item” Inventor Menu item for creating or updating an Item in ERP using iProperties
of the active Part- or Assembly-Document

• Added “Insert ERP Item” Inventor Menu item for searching and inserting an existing ERP Item as Virtual Com-
ponent or as Raw Material for the active Part- or Assembly-Document

• Added “Link ERP Item” Inventor Menu item for searching and linking an existing ERP Item to the active Part-
or Assembly-Document

General

• The Sample.ConnectToPowerGateServer script is enabled by default on new environments and automatically
connect to the public Demo ERP system by default

158 Chapter 8. Change logs

https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/
https://doc.coolorange.com/projects/powerevents/en/stable/change_logs/powerevents_v24/#v24-0-4
https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

• Renamed sample scripts Sample.TransferERPItemViaFileTab.ps1 and Sample.TransferERPItemViaItemTab.ps1
to Sample.Tab-File-ErpItem.ps1 and Sample.Tab-Item-ErpItem.ps1

• Renamed used Sample.TransferERPItemTab.xaml to Sample.Tab-ErpItem.xaml

• Renamed sample scripts Sample.TransferERPBOMViaFileTab.ps1 and Sam-
ple.TransferERPBOMViaItemTab.ps1 to Sample.Tab-File-ErpBom.ps1 and Sample.Tab-Item-ErpBom.ps1

• Renamed used Sample.TransferERPBOMTab.xaml to Sample.Tab-ErpBom.xaml

• Renamed sample script Sample.SyncERPTabConfiguration.ps1 to Sample.ManagePowerGateConfiguration.ps1

• Renamed used configuration Sample.DefaultERPTabConfiguration.xml to Sample.PowerGateConfiguration.xml

8.1.9 v24.0.2

18-05-2023

Features

• Easy and secure upgrade of already productive ERP integrations implemented with v21 (or older) and Vault Data
Standard, so that working can be continued as usual on all workstations

General

• Updating the product disables all sample ERP integration scripts by default if they were not already present on
the workstation before.
So for v22 upgrades (or older) also all Sample.TransferERP. . .Tab.ps1 and Sam-
ple.SyncERPTabConfiguration.ps1 files are installed to the .\Disabled subdirectory, so they no longer
need to be disabled manually for compatibility reasons.

• Automatic display of Non-Terminating Errors:

– For Vault Data Standard integrations, connection errors and incorrect ERP cmdlet usages or parameters are
no longer displayed by default.
This eliminates the need to disable possible duplicate messages after updating from v21 or older. Such
errors are now clearly displayed only in powerEvents-based integrations (and PowerShell IDE’s).

– In powerEvents-based integrations the automatic display of these errors can be suppressed for individual
ERP cmdlet calls by passing -ErrorAction SilentlyContinue

Fixed

• Issue with Updates on Job Processor environments (and workstations with unsupport Vault versions) when only
main components (Cmdlets and .NET Library) were installed, but simple setup executions incorrectly installed
sample files and powerJobs Client

Breaking Changes

Setup argument renamed and value changed
The Setup argument for installing only the main components (Cmdlets and .NET Library) has been renamed to
MAIN_COMPONENTS_ONLY and the required value was changed to 1.
Therefore updates on Job Processor environments (and workstations with unsupport Vault versions) should be per-
formed using the adapted command-line argument:

8.1. powerGate v24 159

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script

powerGate

Previous Now
"\\path\to\networklocation\powerGate24.
0_Vault2024.exe" -silent ACCEPT_EULA=1
VAULT_ERP_INTEGRATION=0

"\\path\to\networklocation\powerGate24.
0_Vault2024.exe" -silent ACCEPT_EULA=1
MAIN_COMPONENTS_ONLY=1

Vault Data Standard integrations for v22.0.1 and later - automatic Error display removed
ERP integrations implemented with Vault Data Standard (e.g. powerGateTemplate based projects) do not contain any
additional error checking or handling logic after ERP cmdlet invocations.
So that non-terminating connection errors (v22.0.1) and incorrect ERP cmdlet usages (v23.0.1) are not swallowed, the
following line should be added after importing the powerGate module:

Import-Module powerGate
$global:Host.PrivateData.OnNonTerminatingError = $global:deprecated_
→˓defaultErrorBehaviorForVDS

Note: Earlier VDS integrations implemented for v21 or older, should already contain the required error handling logic
and are therefore not affected (see “Autodesk Vault Data Standard - Non-Terminating Errors”).

8.1.10 v24.0.1

27-04-2023

General

• Added support for Vault 2024

• Updated Licensing to version: 18.2.29

• End User License Agreement (EULA) has changed

• Updated minimum required .NET Framework version to 4.7

• Removed DEPRECATED support for simple updates of ERP interfaces that are compiled against the 20.0 version
of the .NET library.
The policy files for v20 versions of the powerGate.Erp.Client assembly are no longer installed in the GAC, which
requires a rebuild against the latest version.

Breaking Changes

Projects targeting .NET Framework versions lower than 4.7 :
Projects using the powerGate .NET library that target a lower .NET Framework version than 4.7 need to be upgraded
to target at least 4.7 to compile when referencing the latest powerGate.Erp.Client assembly.

160 Chapter 8. Change logs

https://github.com/coolOrangeLabs/powerGateTemplate/tree/3b1c258b356ca18bd3101103e83683439f91ee58
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-2-29
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net47

powerGate

8.2 powerGate v23

8.2.1 v23.0.13

18-04-2023

General

• Updated powerEvents to version: 23.0.20.
This fixes terminating errors that prevented the use of finally statements in -Action parameters of cmdlets like
Register-VaultEvent, Add-VaultTab, Add-VaultMenuItem and Add-InventorMenuItem,
which affect e.g. ERP integrations based on the powerGateTemplate project.

Fixed

• Display issue in the Error Message Box where System.Management.Automation.RuntimeException was displayed
for all non-terminating errors instead of their actual exception type

8.2.2 v23.0.12

04-04-2023

Features

• The sample Vault - ERP integration can be tried out immediately after installing powerGate, as it automatically
connects to a public Demo ERP system.
This way, no more powerGateServer installation or “TestVault” configuration is required for the evaluation.

General

• Disabled the Sample.ConnectToERP script by default on new environments, as a connection to the powerGate-
Server ERP Plugin for evaluation purposes is no longer performed

Fixed

• Issue with Sample.SyncERPTabConfiguration where the script failed and an error dialog was displayed,
when a user logged in to Vault with no Vault Get Options or Vault Set Options permission

8.2.3 v23.0.10

17-03-2023

Fixed

• Issue with Update-ERPObject where the cmdlet did not return a result even though the update was successful,
when the BeforeRequest/AfterResponse action gets set in -OnConnect of the Connect-ERP

8.2. powerGate v23 161

https://doc.coolorange.com/projects/powerevents/en/stable/change_logs/powerevents_v23/#v23-0-20
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/commandlets/register-vaultevent/
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/commandlets/add-vaulttab/
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/commandlets/add-vaultmenuitem/
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/commandlets/add-inventormenuitem/
https://github.com/coolOrangeLabs/powerGateTemplate
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/#errors
https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#erp
https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script
https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#erp

powerGate

8.2.4 v23.0.9

07-03-2023

General

• Updated powerEvents to version: 23.0.19.
This prevents crashes of the Vault Client that can occur in custom ERP Tabs after scripting errors in UI events
or when using the Show-Inspector cmdlet,
especially in scripts based on Sample.TransferERPBOMViaFileTab or Sample.TransferERPBOMViaItemTab.

8.2.5 v23.0.8

08-02-2023

Features

• Extended Setup with additional command-line argument for installing product without sample files and without
powerJobs Client on Job Processor and unsupported Vault workstations

Fixed

• Issue with Setup that after upgrading it was not longer possible to uninstall via Programs & Features, when the
Setup file of the previous installation was renamed or removed

8.2.6 v23.0.7

12-01-2023

Fixed

• Issue in BOM Window when multiple positions of the same item are displayed in the BOM Tab and the custom
BOM properties of the first bomRow were incorrectly displayed for all rows and also transferred to ERP

• In the Field Chooser all BOM properties can be correctly identified with a corresponding BOM icon

• Issue with Add-ERPMedia where uploading a file to an EntitySet of an Odata v4 service failed when using the
-Properties argument

Warning: When upgrading to this version with saved layout files, the columns and their order on the Item Tab and
BOM Tab are reset to the default value.

8.2.7 v23.0.6

19-12-2022

Features

• Added Sample.SyncERPTabConfiguration script that provides Tools Menu items in the Vault Client for uploading
-and downloading configurations for the ERP integrations

162 Chapter 8. Change logs

https://doc.coolorange.com/projects/powerevents/en/stable/change_logs/powerevents_v23/#v23-0-19
https://doc.coolorange.com/projects/powerjobsclient/en/stable/

powerGate

8.2.8 v23.0.5

14-12-2022

Features

• The “ERP Item” tabs in the Vault Client allow to create new materials in the ERP system, with information from
the selected Vault file, Vault item or manually entered data. In addition, these tabs also allow material information
to be updated in the ERP system directly from the Vault Client.

• Enhanced “ERP BOM” tabs with the ability to batch transfer material- and BOM data to the ERP system. With
the BOM Window the complete CAD-BOM of the selected Vault file or Vault item can be displayed and its status
can be compared with the ERP system.
BOMs, individual positions or items that do not yet exist or need to be updated can than be automatically trans-
ferred to ERP.

General

• Renamed sample scripts Sample.DisplayERPItemInFileTab.ps1 to Sample.TransferERPItemViaFileTab.ps1 and
Sample.DisplayERPItemInFileTab.ps1 to Sample.TransferERPItemViaItemTab.ps1

• Renamed used Sample.DisplayERPItemTab.xaml file to Sample.TransferERPItemTab.xaml

• Renamed sample scripts Sample.DisplayERPBOMInFileTab.ps1 to Sample.TransferERPBOMViaFileTab.ps1
and Sample.DisplayERPBOMInFileTab.ps1 to Sample.TransferERPBOMViaItemTab.ps1

• Renamed used Sample.DisplayERPBOMTab.xaml file to Sample.TransferERPBOMTab.xaml

8.2.9 v23.0.4

06-12-2022

Features

• Added Sample.ConnectToPowerGateServer script that automatically connects to the test/productive powerGate-
Server environment depending on the logged in Vault

• Added ERP Item tab that displays the material number and other relevant information from the ERP system for
a selected Vault file

• Added ERP BOM tab that displays the complete ERP bill of materials (BOM) for the selected Vault file

• Added ERP Item tab that displays the material number and other relevant information from the ERP system for
a selected Vault item

• Added ERP BOM tab that displays the complete ERP bill of materials (BOM) for the selected Vault item

Fixed

• Issue with Disconnect-ERP and IErpService.Dispose() that performed unnecessary requests which terminated
with the unclear error message “Unexpected WebException encountered” when closing connections to unavail-
able Catalog Services (powerGateServer and SAP systems)

8.2. powerGate v23 163

https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#catalogservice

powerGate

Breaking Changes

ERP integrations without powerGateServer (SAP)
The Sample.ConnectToPowerGateServer script is active by default and will, depending on the Vault name try to connect
to a powerGateServer on the localhost or ADMS.
For ERP integrations where no powerGateServer is used (e.g. with SAP systems), Error Message Boxes are displayed
after logging into Vault.
The sample script must therefore be disabled.

8.2.10 v23.0.3

10-11-2022

Fixed

• Issue with Update-ERPObject that -Keys were missing in request body when using PUT as PreferredUp-
dateMethod

8.2.11 v23.0.2

17-10-2022

Fixed

• Issue with Connection Error Dialog not displayed in Vault Data Standard customizations (e.g. powerGateTem-
plate) and powerEvents Client Customizations

8.2.12 v23.0.1

05-10-2022

Features

• powerJobs Client is automatically installed and therefore adds support for Vault Applications:
Vault Client- and Inventor 2023, 2022 and 2021

• An Error Message Box informs about erroneous ERP cmdlet usage and parameters by which no web requests
can be sent
(e.g. missing Connect-ERP invocations, $null values for -Keys or for not-nullable -Properties, wrong property
names, property values of invalid type. . .)

• Also in the BOM Window, where multiple BOMs, rows and Items are checked or transferred, automatic Error
states are displayed if ERP cmdlets with problematic parameter values are used.

• powerEvents Restriction events are automatically restricted when such issue occur in ERP cmdlets.

164 Chapter 8. Change logs

https://doc.coolorange.com/projects/powerevents/en/stable/getting_started/#activating-a-sample-script
https://knowledge.autodesk.com/support/vault-products/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Vault-Admin/files/GUID-D7A81AE0-7CB0-4428-961C-A5E0F8B791D8-htm.html
https://github.com/coolOrangeLabs/powerGateTemplate
https://github.com/coolOrangeLabs/powerGateTemplate
https://doc.coolorange.com/projects/powerevents/en/stable/client_customizations/
https://doc.coolorange.com/projects/powerjobsclient/en/stable/
https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/objects/event_mappings/

powerGate

Breaking Changes

Requires Vault Professional Client
The product can only be installed on environments where Autodesk Vault Professional Client 2023, 2022 or 2021 is
installed.

8.3 powerGate v22

8.3.1 v22.0.1

20-09-2022

Features

• A Connection Error Dialog informs Vault users about erroneous web requests, responses and their exact cause

• Similarly, in the BOM Window, BOMs, rows and Items are automatically marked with an Error status when
connection problems occur during Check or Transfer operations

• powerEvents Restriction events are automatically restricted when ERP connection problems occur

General

• WebRequestException Class provides following properties:

– Source informs about where the issue occurred. This can be either the local computer, powerGateServer
or the ERP system

– StackTrace provides details about the actual error occured in powerGateServer Plugins or on the web
server of the ERP system

• Connection problems are displayed more clearly on all workstations when beeing caused by:

– the local computer if no request can be send to the server (e.g. no internet connection available, proxy
blocks access. . .) or if the license has expired

– expired powerGateServer licenses (requires powerGateServer v21.0.5 or later)

– the powerGateServer or the ERP system when no response is returned (e.g. server not responding in time,
powerGateServer service not running. . .)

– incorrect data input by the Vault user or the ERP integration (e.g. invalid credentials, execution of operations
for non-existing entities, bad syntax in requests. . .) causing the server to respond with 4xx client errors

– the powerGateServer or the ERP system while processing $metadata requests

• All Cmdlets now respond to non-terminating errors by additionally displaying the error messages in PowerShell
consoles before the execution continues (common parameter -ErrorAction:Continue)

• Improved performance of ERP Entity- and Media cmdlets by reducing unnecessary $metadata requests to un-
available Catalog Service-services (powerGateServer and SAP systems).
An attempt to first find the passed -EntitySet or -EntityType only within previously available services is performed.

Fixed

• Issue with Connect-ERP and IErpClient.ConnectErp which did not fail with WebRequestExceptions on failed
connections to Catalog Services (powerGateServer and SAP systems)

• Follow-up errors after failed or missing Connect-ERP cmdlet calls in all ERP Entity- and Media cmdlets which
terminated with the unclear error message “No EntitySet found with the given name: . . . ”

8.3. powerGate v22 165

https://doc.coolorange.com/projects/powerevents/en/stable/code_reference/objects/event_mappings/
https://doc.coolorange.com/projects/powergateserver/en/stable/activation_and_trial_limitations/
https://doc.coolorange.com/projects/powergateserver/en/stable/change_logs/powerGateServer_v21/#v21-0-5
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters#-erroraction
https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#catalogservice
https://doc.coolorange.com/projects/powergateserver/en/stable/plugins/sample_plugins/#catalogservice

powerGate

• Issue with Get-ERPObject and Get-ERPObjects which failed when -Expand and -Select argument were used
together on same navgation property

• Typo in the error message of New-ERPObject when multiple entity types match the passed -EntityType parameter

8.4 powerGate v21

8.4.1 v21.0.16

09-05-2022

Features

Bom Window

• Custom Bom properties can also be displayed for the root element in the BOM Window.
With the help of powerVault v23.0.2, for example, model state information can also be displayed for Inventor
main assemblies (see full example).

General

• The Get-BomRows -BomHeader argument provides also the Bom_ properties of the root entity which got passed
to the Show-BOMWindow -Entity parameter

8.4.2 v21.0.15

04-03-2022

Features

• Added support for console logs in PowerShell ISE

Fixed

• Vulnerability in Logging configuration files by updating log4net to v2.0.14 (CVE-2018-1285)

• Issue with ColoredConsoleAppender that caused powershell remote hosts to crash when appender was logging
to console

8.4.3 v21.0.14

18-10-2021

General

• Updated Licensing to version: 18.2.27

Features

Bom Window

• The BOM Window provides a dedicated column Status Details which holds the Status Details of a BomRow and
Item entitity.

Fixed

Bom Window

• Issue with Update-BomWindowEntity where not passing a value for -Status resets the Status of the entity

166 Chapter 8. Change logs

https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-2
https://www.cvedetails.com/cve/CVE-2018-1285/
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.runspacefactory.createoutofprocessrunspace
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-2-27

powerGate

Breaking Changes

Cmdlets: Update-BomWindowEntity renamed -Tooltip parameter
The -Tooltip parameter of the Update-BomWindowEntity Cmdlet was renamed to -StatusDetails as it provides are more
appropriate description of the newly introduced behaviour of the parameter.

Objects: _Tooltip property renamed to _StatusDetails
The _Tooltip property of the Bom, BomRow and Item objects has been renamed to _StatusDetails as it holds both
the values of the Status Icon Tooltip and the Status Details Column of the BOM Window.

8.4.4 v21.0.13

11-08-2021

Features

• WebRequestException provides more readable error messages from ERP systems.
Its Response property grants direct access to the OData error response.

• Non-terminating errors within Cmdlets can now be retrieved more easily using $Error. When the cmdlets fail
due to error responses from the ERP system, the variable provides the WebRequestException.

• Get-ERPObject: “Not Found” warnings are no longer logged when the ERP object cannot be found with the
specified keys

Breaking Changes

Cmdlets: Different return value in error situation
The following cmdlets: Get-ERPEntityTypes, Get-ERPEntitySets, Get-ERPServices, Get-ERPObjects which previ-
ously returned $null on error, now return empty array.

.NET Library: GetErpObject method no longer throws exception
The GetERPObject() method and the corresponding extension method of the IErpEntitySet Interface interface from
the .NET Library no longer throw exceptions if the ERP object cannot be found.

8.4.5 v21.0.11

10-05-2021

General

• Updated Licensing to version: 18.1.24

• End User License Agreement (EULA) has changed

Features

Bom Window

• The size and position of the window is automatically saved/restored.

8.4. powerGate v21 167

https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-1-24

powerGate

8.4.6 v21.0.8

17-02-2021

Features

Bom Window

• Add-BomWindowEntity with -Type BomRow:

– Entity properties and BOM properties

– Passed Entity properties (e.g. “Name”) can be displayed in the BOM Tab

Fixed

Bom Window

• Update-BomWindowEntity updates the passed Entity properties in the BOM Window even for BomRows created
by Add-BomWindowEntity, instead ignoring them.

Breaking Changes

Add-BomWindowEntity -Type BomRow

BOM properties have to be passed with prefix
The behavior that all passed properties are treated as BOM properties changed, as the cmdlet now distinguishes between
Entity properties and BOM properties.
Therefore BOM properties have to be passed with a ‘Bom_’ prefix for keeping them displayed in the already configured
BOM Window columns.

BOM properties returned with prefix
All the BOM properties in the BomRow result are returned with a ‘Bom_’ prefix.
When accessing BomRow property values, extend the property names with this prefix in order prevent accesses to not
existing or wrong members.

8.4.7 v21.0.7

20-01-2021

General

• Updated Licensing to version: 18.1.22

8.4.8 v21.0.6

21-12-2020

General

• Updated Licensing to version: 18.1.21

• Copyright notices have changed

Fixed

• Issue that led to an unusable machine and failing Jobs after running Job Processor for a long time

168 Chapter 8. Change logs

https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-1-22
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-1-21

powerGate

8.4.9 v21.0.3

22-09-2020

Fixed

Bom Window

• BomRows of identical BOM’s were not update correctly

8.4.10 v21.0.2

29-05-2020

General

• End User License Agreement (EULA) has changed

• Updated Licensing to version: 18.1.17

• Added powerGate Information shortcut to startmenu

• Removed powerGate Help shortcut from startmenu as it can be accessed via powerGate Information shortcut

• Removed Splashscreen

Fixed

• Compatibility-Issue with other coolOrange products using an older Logging version

8.5 powerGate v20

8.5.1 v20.0.7

05-11-2019

General

• Updated Licensing to version: 18.0.10

8.5.2 v20.0.6

20-08-2019

General

• Updated Licensing to version: 18.0.8

8.5. powerGate v20 169

https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-1-17
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-0-10
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-0-8

powerGate

8.5.3 v20.0.5

09-08-2019

Fixed

• Increasing memory usage when connecting ERP systems by using $sapConnect or SapConnect

• ParameterBindingException when using Connect-Erp multiple times with $sapConnect

8.5.4 v20.0.4

23-07-2019

Fixed

• Issue that host application gets unresponsive when License information is retrieved

8.5.5 v20.0.3

30-05-2019

General

• Updated Licensing to version: 18.0.7

8.5.6 v20.0.2

21-05-2019

Features

• Added support for Stand-Alone Licensing

General

• Updated Licensing to version: 18.0.6

8.5.7 v20.0.1

04-04-2019

Features

• Added support for Token Licensing

• Trial mode expires after 30 days

General

• End User License Agreement (EULA) has changed

• Updated Licensing to version: 18.0.3

170 Chapter 8. Change logs

https://doc.coolorange.com/projects/licensing/en/stable/license_information/
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-0-7
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-0-6
https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v18/#v18-0-3

powerGate

8.6 powerGate v19

8.6.1 v19.0.14

28-11-2018

General

BomWindow

• Column values are immediately refreshed when updating custom properties

Features

BomWindow

• It is now possible to update standard properties with Update-BomWindowEntity:

– For BomRows: _Name, Bom_Number, Bom_PositionNumber, Bom_Quantity

– For Items: _Name

Fixed

BomWindow

• BOM loading errors occurred during Check or Transfer operations because Get-BomRows got executed after
using Add-BomWindowEntity

• Column values did not get refreshed when updating custom properties that exist on the root entity

• The BomRow properties Bom_PositionNumber and Bom_Quantity were always of type ‘string’

• Update-BomWindowEntity removed columns even if property still exists on different Items/BomRows

• Progressbar did not update correctly when items were added or removed during Check or Transfer operations

• The Check button was enabled before the BomWindow finished loading BOM

Warning: When upgrading to this version with stored layout files, in the Item Tab the columns and their order will
be resetted to default.

Breaking Changes

Show-BomWindow

When calling Add-BomWindowEntity, the function Get-BomRows is no longer executed for the newly added entity.
This could cause issues in some very rare cases where Get-BomRows was expected to be called.

8.6. powerGate v19 171

powerGate

8.6.2 v19.0.11

06-11-2018

General

BomWindow

• Improved resizing behavior of columns and applied minimum width

• Status column is pinned to the right side

Fixed

BomWindow

• First column Name gets to small when many columns are added

• Some standard properties got removed after updating -Properties with Update-BomWindowEntity

– For BomRows: standard properties Bom_Number, Bom_PositionNumber, Bom_Quantity and _Name were
removed

– For Items: _Name property was removed

Warning: It is recommended to remove the stored layout files when upgrading to this version, otherwise the Status
column might not be pinned.

8.6.3 v19.0.9

17-10-2018

Features

BomWindow

• Filter and order BOMs and items by their status

Fixed

BomWindow

• Sorting and Filtering the Name column was not possible in the BOM Tab

• Applied Filters were not saved immediately

• Name column has now the same height as all other columns

Note: When upgrading to this version with stored layout files, the position of some columns might change. The
column order has to be manually fixed.

172 Chapter 8. Change logs

powerGate

8.6.4 v19.0.8

08-10-2018

General

• Updated Licensing to version: 17.0.3

Fixed

BomWindow

• Existing rows are getting duplicated when collapsing and expanding BOMs in the BOM Tab

8.6.5 v19.0.7

21-09-2018

Features

BomWindow

• After Check or Transfer operation completed, Message Box informs directly about Success, Caution and Error
depending on the States of the processed BOMs and Items

• Improved Message Box to show a report of the occurred States within the operation, also when operation aborted
with exception

• Tooltip remains visible while mouse is located on Status icon

• BOM and entity properties are displayed in the BOM Tab and the field chooser, also when they have the same
name

General

• Assemblies System.Windows.Interactivity and Microsoft.Expression.Interactions are getting installed into the
GAC

Fixed

BomWindow

• Stored columns are getting removed and the BOM layout gets reset when using entity properties and BOM
properties with the same name

• Sorting settings of columns did not get saved correctly

• Crash with error message: “Binding cannot be changed after it has been used” for certain stored layouts

• Crash when using Add-BomWindowEntity with a property that already exists as entity property

• show-BomWindow crashed when invoked for the first time in a Vault session within DataStandard

Warning: It is recommended to remove the stored layout files when upgrading to this version.

8.6. powerGate v19 173

https://doc.coolorange.com/projects/licensing/en/stable/change_logs/license_v17/#v17-0-3

powerGate

8.6.6 v19.0.5

10-08-2018

Features

BomWindow

• Re-designed the tooltip and status information for BOMs and BomRows:

– Moved the BOM status from the Status column into the Name column (on the left of the BOM name). It
provides only the status and tooltip for the BOM.

– The Status column now instead displays the state and tooltip for the BomRows.

– In case of an error during the Check or Transfer operation the BomRows, which were not updated during
that process, will have the status Unknown.

– Switched Number column with Name column in BOM Tab.

– Renamed Number column to Name in Item Tab.

Warning: The Columns and their order will be resetted to default.

8.6.7 v19.0.4

25-04-2018

Features

• powerGate cmdlets can be used in every IDE

General

• Updated to PowerShell 4.0

• Removed powerGate ISE shortcut from startmenu

Breaking Changes

Previous Now
The cmdlet was automati-
cally creating a new run-
space that was cleaned up
when closing the Window.

The cmdlets will NOT create a new runspace. This has the advantage that the required
functions do no have to be imported as PowerShell Module anymore. Attention:
When some sort of caching is made in the runspace, the cmdlet does not clean that
up. Also pay attention that variables could be overwritten.

174 Chapter 8. Change logs

powerGate

8.6.8 v19.0.3

22-02-2018

General

• Assemblies coolorange.licensing and coolorange.Utils.UI now gets installed in the GAC

• Applications using powerGate.Erp.Client library are still running after update without having to recompile them

• Replaced Log4PostSharp with PostSharp Diagnostics for extended Debug logging

Fixed

• Issue where logging did not work when powerGate was used in a 32-Bit process

• Issue where BomWindow did not display values of properties containing whitespace, caret (^) or comma (,)
characters.

8.7 powerGate v18

8.7.1 v18.1.3

13-10-2017

General

• Cmdlets: require .Net framework 4.5

• Cmdlets: Moved SapConnect implementation to .NETLibrary

Features

• Added powerGate .NETLibrary in order to take full advantage of the powerGate features directly in your .NET
application

Fixed

• Issue with SapConnect not refreshing the CSRF-Token properly, when additional Certificates are used for the
communication

8.7.2 v18.0.4

21-04-2017

• Official Release

General

• Standardized Logging same as for other products

• Changed registry keys to “HKLM\Software\coolOrange s.r.l.\powerGate”: Location and Version

8.7. powerGate v18 175

http://doc.postsharp.net/5.0/logging

powerGate

8.8 powerGate v17

8.8.1 v17.1.68 beta

10-03-2017

Features

BomWindow

• Item Tab now also contains Item of the RootBom.

• BomRows now have different stylings depending on their Status.

Fixed

• Connect-ERP: Issue when connecting to service which requires authentication. Connection request was send
twice.

• Update-BomWindowEntity: Issue when updating BomRow and Item properties, like “@{‘BOM_Test’=’Test’}”
was added as “BOM_BOM_Test”.

• Update-BomWindowEntity: When the item of a bomRow was updated, the changed properties were not available
on the bomRow.

• $sapConnect: Issue when multiple cookies are required from SAP.

8.8.2 v17.1.60 beta

10-02-2017

Fixed

• Fixed Issue where BOM Window was crashing when updating a bomRow property

• Unhandled exceptions occured in the BOM Window are now handled internally. Therefore the calling application
like Vault or Poweshell_ISE will not crash anymore because of unhandled exceptions occurred in the BOM
Window.

8.8.3 v17.1.57 beta

12-01-2017

Features

BomWindow

• Show-BomWindow can be called also in other PowerShell IDE’s

• Merged all required functions to single Check/Transfer functions

• Required functions are called a single time by passing all the entities as list (except Get-BomRows)

• New cmdlet: Add-BomWindowEntity

• New cmdlet: Remove-BomWindowEntity

• New cmdlet: Update-BomWindowEntity

• Introduced status and Tooltip. Those are also available arguments for required functions

• extended UI to show in MessageBox the thrown errors from PowerShell functions

176 Chapter 8. Change logs

powerGate

Fixed

• Getting response with state 403 Forbidden when using $global:SapConnect_Authentication

• Performance issue: when running an Item/BOM check/transfer, all entities seem to be busy for a long time and
suddenly all entities complete very fast at the exact same time. In the background the requests are send to the
server in the meantime, but UI does not update with the results quickly.

• Performance issue: After clicking ‘Check’ or ‘Transfer’ button, it takes very long time until first request is send
to the server when a huge amount of entities becomes processed from the Window.

Breaking Changes

: Renamed Cmdlet Show-ErpBom to Show-BomWindow.

8.8. powerGate v17 177

powerGate

v16 v17
Convert-
ToErpMaterial/Bom

removed, because the Bom-Window has no knowledge about ERP anymore

Convert-
FromPsMaterial/Bom

removed, because the differences are settable via Update-BomWindowEntity Cmdlet and are not
automatically detected anymore.

Get-
ErpMaterial

Code moved to Check-Items function. Use Update-BomWindowEntity to change the Status of the
entity to New when not existing in ERP.

Compare-
Material

Code moved to Check-Items. Use Update-BomWindowEntity to change the Status of the entity to
Different (set Tooltip with differences manually) or Identical when it exists in ERP.

Create-
ErpMaterial

Code moved to Transfer-Items. Create entity in ERP when the Status of the entity is New.

Update-
ErpMaterial

Code moved to Transfer-Items. Update entity in ERP when the Status of the entity is Different.

Get-
ErpBom

Code moved to Check-Boms. Use Update-BomWindowEntity to change the Status of the BOM-
Header to New when the BOM does not exist in ERP.

Compare-
BomHeader

Code moved to Check-Boms. Use Update-BomWindowEntity to change the Status of the BOM-
Header to Different (set Tooltip with differences manually) or Identical when the BOM does not
exist in ERP.

Compare-
VaultBomRow

Code moved to Check-Boms. Use Update-BomWindowEntity to change the Status of the BOM-
Row to Remove (when Row does not exist in ERP-BOM) or Different (set Tooltip with differences
manually).

Compare-
ErpBomRow

Code moved to Check-Boms function. Use Update-BomWindowEntity to change the Status of the
BOM-Row to New (when ERP-Row does not exist in Children) or Identical.

Create-
ErpBom

Code moved to Transfer-Boms. Create BOM with all it’s Children in ERP when the Status of the
BOM-Header is New.

Update-
ErpBom

Code moved to Transfer-Boms. Update BOM-Header in ERP when the Status of the BOM-Header is
Different. Additionally check for all it’s Children whether there Status is New, Remove or Different
in order to create/remove/update those rows in the ERP-BOM.

Begin-
GetErpMaterials

removed, because the operation can be performed at the beginning of Check-Items function.

End-
GetErpMaterials

removed, because the operation can be performed at the end of Check-Items function.

Begin-
Create/UpdateErpMaterials

removed, because the operation can be performed at the beginning of Transfer-Items function.

End-
Create/UpdateErpMaterials

removed, because the operation can be performed at the end of Transfer-Items function.

Begin-
GetErpBoms

removed, because the operation can be performed at the beginning of Check-Boms function.

End-
GetErpBoms

removed, because the operation can be performed at the end of Check-Boms function.

Begin-
Create/UpdateErpBoms

removed, because the operation can be performed at the beginning of Transfer-Boms function.

End-
Create/UpdateErpBoms

removed, because the operation can be performed at the end of Transfer-Boms function.

178 Chapter 8. Change logs

powerGate

8.8.4 v17.0.46

29-11-2016

General

• Removed Datastandard Integration support from documentation

Features

• Re-designed Cmdlets (see below Breaking Changes)

• Support for OData v1 - v4 standards

• Installed “powerGate 17.0 Logs” shortcut in start-menu section of powerGate

BomWindow

• Changed status-icons to more meaningful icons

• Introduced Localization for German environments

Fixed

• Moved LogFile to %LOCALAPPDATA%/coolOrange/Logs in order that Non-Admin users have write-access to
the files.

• Crash in BOM Window when customizing the columns with the field chooser

• BomWindow shows error “Object reference not set to an instance of an object” when following BomRow prop-
erties are $null: Bom_PositionNumber, Bom_Number, Bom_Quantity etc. .

Breaking Changes

: Connect-Erp

v16 v17
-ServiceUri <String> renamed to Service. Additionally changed Type to <Uri>
-Username <String> renamed to User
-Startcache removed because Services are loaded on demand.
Login-Window removed

When connecting to SAP servers v17 requires additional -OnConnect argument for SAP endpoint.

Disconnect-Erp

v16 v17
Return type bool changed to void

Get-ERPServices

v16 v17
-Refresh <String> removed because Services are loaded on demand.
Return type List<Service> changed to ErpService[]

$service: Use ErpService instead.

8.8. powerGate v17 179

http://go.sap.com/index.html

powerGate

v16 v17
-Path <String> replaced with Url. Changed type to <Uri>
-Loaded <bool> removed, use Get-ERPServices instead and check if the service is con-

tained.
-EntityContainer <Collec-
tion<IEntityTyp>>

removed, use Get-ERPEntitySets and Get-ERPEntityTypes instead.

$entitytype: use EntitySet and EntityType instead

v16 v17
-Service <String> Changed type to <Uri> in EntitySet
-PropertyRefs <Collection<ISapProperty>> replaced with Keys in Get-ERPEntityTypes. Changed type to

<String[]>
-Properties <Collection<ISapPropert>> replaced with Properties in EntityType. Changed type to <String[]>
-NavigationProperties <Collec-
tion<ISapNavigationPropert>>

replaced with NavigationProperties in EntityType. Changed type to
<String[]>

-PropNames Collection<String> removed, use Properties instead
-PropRefNames Collection<String> removed, use Keys instead
-AllProperties Collection<ISapProperty> removed, use Keys,Properties and NavigationProperties instead
-AllPropertiesNames Collection<String> removed, use Keys,Properties and NavigationProperties instead
-AllMandatoryErpProperties Collec-
tion<ISapProperty>

removed, use Keys,Properties and NavigationProperties instead and
filter for mendatory once.

Get-ERPObject

v16 v17
-Entity
<String>

renamed to EntitySet. Additionally it was possible to specify the EntitySet by giving the bundle name,
separated with ‘.’. Now it is possible to specify the EntitySet by providing the full or a part of it’s
whole Url.

-Key
<String>

renamed to Keys. Changed to to <Hashtable> or <PSObject>

-Exists removed
-Expand
<String>

changed type to String[]. In past it was possible to specify multiple properties separated by ‘,’. Pass
array now.

-File
<String>

removed, use Get-ERPMedia instead.

Return type
<PSOb-
ject>

Expanded navigation property lists where accessible via “.results”. Now the lists are directly acces-
sible.

empty on error

Get-ERPObjects

180 Chapter 8. Change logs

powerGate

v16 v17
-Entity
<String>

renamed to EntitySet. Additionally it was possible to specify the EntitySet by giving the bundle name,
separated with ‘.’. Now it is possible to specify the EntitySet by providing the full or a part of it’s
whole Url.

-Top
<String>

changed to <int>

-OrderBy
<String>

changed to <String> or <hashtable> or <hashtable[]>.

-Expand
<String>

changed to <String[]>. Note that it was possible to specify multiple properties separated by ‘,’.

Return type
<PSOb-
ject>

Expanded navigation property lists where accessible via “.results”. Now the lists are directly acces-
sible.

empty on error

Remove-ERPObject

v16 v17
-Entity
<String>

renamed to EntitySet. Additionally it was possible to specify the EntitySet by giving the bundle name,
separated with ‘.’. Now it is possible to specify the EntitySet by providing the full or a part of it’s whole
Url.

-Key
<String>

renamed to Keys. Changed to <Hashtable> or <PSObject>

Return
type
<bool>

<bool> with an additional property ‘Error’ containing the Exception/ErrorMessage.

Update-ERPObject

v16 v17
-Entity
<String>”

renamed to EntitySet. Additionally it was possible to specify the EntitySet by giving the bundle name,
separated with ‘.’. Now it is possible to specify the EntitySet by providing the full or a part of it’s whole
Url.

-Properties
<String>

Splited now to two parameters called Keys and Properties. Changed to <Hashtable> or <PSObject>

-Deep
switchpa-
rameter

removed

HTTP
request
PUT

HTTP request MERGE

Return
type
<bool>

empty on error.

Add-ERPObject

8.8. powerGate v17 181

powerGate

v16 v17
-
Entity<String>

renamed to EntitySet. Additionally it was possible to specify the EntitySet by giving the bundle name,
separated with ‘.’. Now it is possible to specify the EntitySet by providing the full or a part of it’s
whole Url.

-Properties
<Hashtable>

Changed to <Hashtable> or <PSObject>

Return type
<PSOb-
ject>

empty on error.

Removed Cmdlets

Get-ERPConnectionStatus

Use result of Connect-ERP instead, e.g.:

1 $global:connected = Connect-ERP -Service ...

When running in different runspace, or $global:connected variable is not accessible because of the scope, you can use
the following:

1 if((Get-ErpServices) | where { $_.Name -eq '...' }) {
2 #already connected
3 }

Resolve-ERPObject

Get-ERPEntities

Use cmdlets Get-ERPEntitySets and Get-ERPEntityTypes instead.

Add-ERPDir

Use cmdlet Add-ERPObject for creating the DirContext and Add-ERPMedia for creating the MLE entity
and the Media Resource.
Note that Add-ERPDir did not transmit the Slug-Header in the specified way. This is fixed with Add-
ERPMedia and could therefore cause server side fixes too.

Update-ERPDir

Use cmdlet Update-ERPMedia for updating the Media Resource, and Update-ERPObject for updating the MLE.

powerGateErrors

removed
The last server response can be retrieved by using following example instead: Accessing the last server
response from your script

182 Chapter 8. Change logs

powerGate

8.9 powerGate 2016

8.9.1 v16.0.73

05-08-2015

Features

BomWindow:

• Disable specific boms

• Update exisintg Boms and Materials if they exists in Erp

General

• Remove Get-,Update- and Create-ErpMaterialForBomRow PowerShell functions from Communication.psm1

• Added Begin/End PowerShell function for Check/Process Item/BOM

• Removed powerJobs integration

BomWindow:

• Allow to Enable / Disable Items /Boms to be able to either processs them or not

• Disable and unselect Item when all BomRows with this item are unselected

• Bom view has Check functionality like the materials view

• do not show checkBoxes on empty boms in BomView

• Check,Process Button one control for each tab

• Merge column status and progress in Bom and Material View

• MessageBoxes should be shown when processing / checking is finished

Fixed

• improved PowerShell profile installation

• $powerGateErrors was not set in certain scenarios

• Setup installs ProgramData stuff on wrong drive in special cases

• localization: default only working on english vault environment

• improved Upgrade functionality

• When WindowsPowershell folder does not exists setup aborted

• Create-ErpItem: created invalid json-request when data contains special characters

• Wrong installation, if there are multiple installations of datastandard

• BomWindow: same BomRow on multiple levels in the Bom is not handled as same item

• BomView: process Bom for item that is located multiple times in bom is not processed once

• Add-ErpObject crashes when pasing null values

• BOM with Virtual components are handled correctly

• Assembly with one Component does not show components in window

• Component which is used in multiple Boms can not be checked / processed

• Material Update on Items generates new MaterialNumber for each Item

8.9. powerGate 2016 183

powerGate

• “usage count” column in BOM window is not set correctly

• BOM Window shows different Row Order than Vault: should show hierarchical number e.g. 1.1.3

• Save Window settings failes and crashes BomWindow if no rights on ProgramData folder

• BOMtransfer not working in PowerShell v2

• removed unnecessary logs: powerGateLogger - ERROR

• licensing

8.9.2 v16.0.54

18-06-2015

Features

• Bom Window for bomcreation

• new entity model

General

• Removed XamlIncluder from CAD / Vault Datastandard Integration

• Generate new number - When creating an item, powerGate shall suggest the next free ERP number

• Changed logfile location to “%AllUsersProfile%/coolorange/powerGate”

• Changed login to adress full uri to catalogservice

• Renamed cmdlets from “SAP” to “ERP” (e.g. Get-SAPItem => Get-ErpItem)

• Renamed cmdlets from “Item” to “Object” (e.g. Add-ERPItem => Add-ERPObject)

• Renamed Tools Shortcut´s in StartMenu

Fixed

• Get-ErpItem with entity-properties of type numeric

• Add-erpitem fails with navigationentity, which exists more then once

powerGate, our .NET and PowerShell-extension, makes it possible to create scripts and applications that automate data
synchronization with ERP systems.
It is designed for companies in which the engineering department works with Autodesk tools such as AutoCAD, Au-
toCAD Mechanical and Inventor for authoring data, as well as Vault for managing data.

In addition, with the help of powerEvents and powerJobs Processor the integration between these Autodesk applications
and the ERP system can be realized in a simple way.
For example, it is possible to also introduce new workflows were the presence of ERP materials and BOMs is automat-
ically checked after Lifecycle State changes in Vault.

184 Chapter 8. Change logs

https://doc.coolorange.com/projects/powerevents/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/

CHAPTER

NINE

FEATURES

9.1 Pull and Transfer material information

During the design process, it is crucial for the engineer to access material information from the ERP system.
With powerGate, the designer can assign the material number and other relevant information from the ERP right from
the beginning to the component he is creating.
In the Vault Client this ERP data can be viewed, created or modified in specially provided ERP Item tabs:

185

powerGate

9.2 Pull project information

In order to archive newly created designs in the right project, it is necessary to access this information from the ERP
system.
As with material information, powerGate can provide the correct project number.

9.3 Transfer BOM to the ERP system

As soon as the design takes shape, a bill of materials (BOM) will be derived from the CAD data, which must later be
transferred to the ERP system.
The designer can determine whether a BOM already exists in the ERP system by using the ERP BOM tabs in the Vault
Client:

Subsequently powerGate also enables the engineer to complete the CAD BOM within Vault and transfer it manually
or automatically back to the ERP system, using the BOM Window:

186 Chapter 9. Features

powerGate

9.3. Transfer BOM to the ERP system 187

	Installation
	Requirements
	Workstations
	Job Processor

	Setup
	After the Setup
	Install Locations
	Updates
	Uninstall

	Activation and Trial limitations
	Trial limitations
	Activation
	License Information
	Command-line
	Licensing Options
	Stand Alone Licensing
	Offline activation

	Getting Started
	Using the powerGate Cmdlets
	Start the PowerShell environment
	Connect with ERP system
	Get multiple entities from ERP
	Get a specific entity from ERP
	Update an existing entity
	Add an entity to ERP
	Upload file to ERP

	Using the powerGate .NET library
	Follow these steps to use the powerGate library in your C# project

	Demo ERP system
	Testing

	View ERP data in tabs
	Transfer ERP data manually with tabs

	Connecting Autodesk & ERP
	Sample.ConnectToERP
	Modifications
	Disabling the script

	Sample.Tab-File-ErpBom
	Testing
	Disabling the script

	Sample.Tab-File-ErpItem
	Testing
	Disabling the script

	Sample.Tab-Item-ErpBom
	Testing
	Disabling the script

	Sample.Tab-Item-ErpItem
	Testing
	Disabling the script

	ERP integrations
	Configuration
	Scripts
	Modules

	Errors

	BOM Window
	Customization
	Check and Transfer
	Customizing the layout
	Add or remove columns
	Filtering rows
	Sorting rows
	Change column position and size
	Saving and restoring layouts

	Status
	Status Details

	BOM Tab
	Item Tab
	Errors

	Code Reference
	Cmdlets
	Objects
	Entity
	Syntax
	Examples

	EntitySet
	Syntax

	EntityType
	Syntax

	ErpService
	Syntax
	Remarks

	Multiplicity
	Syntax

	NavigationProperty
	Syntax

	Property
	Syntax

	SapConnect
	Syntax
	Remarks
	Examples
	Customization
	Attention

	Settings
	Syntax
	Examples

	Show-BOMWindow
	Cmdlets
	Add-BomWindowEntity
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Remove-BomWindowEntity
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Update-BomWindowEntity
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Objects
	Bom
	Syntax
	Remarks
	Entity Properties
	BOM Properties

	BomRow
	Syntax
	Remarks
	BOM Properties
	Entity Properties

	Item
	Syntax
	Remarks
	Entity Properties

	Required Functions
	Check-Boms
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Check-Items
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-BomRows
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Transfer-Boms
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Transfer-Items
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Add-ERPMedia
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Add-ERPObject
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Connect-ERP
	Syntax
	Parameters
	Return type
	Remarks
	OnConnect
	Configuration from Vault
	Providing connection details directly:

	Examples

	Disconnect-ERP
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-ERPEntitySets
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-ERPEntityTypes
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-ERPMedia
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-ERPObject
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-ERPObjects
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Get-ERPServices
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	New-ERPObject
	Syntax
	Parameters
	Return type
	Remarks
	Configuration from Vault
	Providing field values directly

	Examples

	Remove-ERPObject
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Update-ERPMedia
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Update-ERPObject
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Connection management
	Entity transfer
	Media exchange

	.NET Library
	ConnectionSettings Class
	SapConnect Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Operator

	Remarks
	Examples
	See also

	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Remarks
	Examples
	See also

	ErpClient Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Methods
	Extension Methods
	Remarks
	Examples
	See also

	ErpClientSettings Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	See also

	ErpObject Class
	Inheritance Hierarchy
	Syntax
	Properties
	Methods
	Remarks
	See also

	IErpClient Interface
	Syntax
	Properties
	Methods
	Extension Methods
	See also

	IErpEntitySet Interface
	Syntax
	Properties
	Methods
	Extension Methods
	Exceptions
	Remarks
	Examples
	See also

	IErpEntitySets Interface
	Syntax
	Properties
	Methods
	See also

	IErpEntityType Interface
	Syntax
	Properties
	Methods
	Remarks
	Examples
	See also

	IErpEntityTypes Interface
	Syntax
	Properties
	Methods
	Remarks
	See also

	IErpNavigationProperties Interface
	Syntax
	Properties
	Methods
	See also

	IErpProperties Interface
	Syntax
	Properties
	Methods
	See also

	IErpService Interface
	Syntax
	Properties
	Methods
	Remarks
	See also

	IErpServices Interface
	Syntax
	Properties
	Methods
	Remarks
	Examples
	See also

	IMediaResources Interface
	Syntax
	Properties
	Methods
	Extension Methods
	Exceptions
	Remarks
	Examples
	See also

	MediaCreateOptions Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Remarks
	See also

	MediaUpdateOptions Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Remarks
	See also

	Multiplicity Enumeration
	Syntax
	Members
	See also

	NavigationProperty Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	See also

	OrderBy Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Remarks
	See also

	OrderDirection Enumeration
	Syntax
	Members
	See also

	Property Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	See also

	QueryOptions Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Remarks
	See also

	SearchOptions Class
	Inheritance Hierarchy
	Syntax
	Constructors
	Properties
	Remarks
	See also

	UpdateMethod Enumeration
	Syntax
	Members
	See also

	WebRequestException Class
	Inheritance Hierarchy
	Syntax
	Properties
	Remarks
	See also

	Classes
	Interfaces
	Enumerations

	UI Components
	ERPComboBox
	Inheritance Hierarchy
	Syntax
	Properties
	Remarks
	Examples

	Components

	Logging
	Log requests and responses
	Log Level
	When to change the logging behavior?
	TrafficPatternLayout
	RequestConversionPattern
	ResponseConversionPattern

	LogFile
	PowerShell IDE

	Change logs
	powerGate v24
	v24.0.15
	v24.0.14
	v24.0.13
	v24.0.9
	v24.0.7
	v24.0.5
	v24.0.4
	v24.0.3
	v24.0.2
	v24.0.1

	powerGate v23
	v23.0.13
	v23.0.12
	v23.0.10
	v23.0.9
	v23.0.8
	v23.0.7
	v23.0.6
	v23.0.5
	v23.0.4
	v23.0.3
	v23.0.2
	v23.0.1

	powerGate v22
	v22.0.1

	powerGate v21
	v21.0.16
	v21.0.15
	v21.0.14
	v21.0.13
	v21.0.11
	v21.0.8
	v21.0.7
	v21.0.6
	v21.0.3
	v21.0.2

	powerGate v20
	v20.0.7
	v20.0.6
	v20.0.5
	v20.0.4
	v20.0.3
	v20.0.2
	v20.0.1

	powerGate v19
	v19.0.14
	v19.0.11
	v19.0.9
	v19.0.8
	v19.0.7
	v19.0.5
	v19.0.4
	v19.0.3

	powerGate v18
	v18.1.3
	v18.0.4

	powerGate v17
	v17.1.68 beta
	v17.1.60 beta
	v17.1.57 beta
	v17.0.46

	powerGate 2016
	v16.0.73
	v16.0.54

	Features
	Pull and Transfer material information
	Pull project information
	Transfer BOM to the ERP system

