
powerEvents

coolOrange s.r.l

Jun 05, 2024

POWEREVENTS

1 Installation 1
1.1 Requirements . 1
1.2 Setup . 1
1.3 Windows permissions . 1
1.4 Install Locations . 2
1.5 Updates . 2
1.6 Uninstall . 3

2 Activation and Trial limitations 5
2.1 Trial limitations . 5
2.2 Activation . 5
2.3 Licensing Options . 6

3 Getting started 7
3.1 Sample scripts . 7
3.2 Activating a sample script . 7
3.3 Testing the script . 8

4 Client Customizations 11
4.1 Sample.RestrictDisturbingSubmittedJobs . 11
4.2 Sample.ValidateProperties . 12
4.3 SubmitJobsOnLifecycleTransition . 13
4.4 SubmitJobsOnVaultMenuItemClick . 15
4.5 Scripts . 17
4.6 Modules . 19
4.7 Errors . 19
4.8 Distribution . 21

5 Code Reference 23
5.1 Cmdlets . 23
5.2 Objects . 36

6 Logging 89
6.1 When to change the logging behavior? . 89
6.2 LogFile . 89
6.3 PowerShell IDE . 90

7 Change logs 93
7.1 powerEvents v24 . 93
7.2 powerEvents v23 . 97
7.3 powerEvents v22 . 101

i

7.4 powerEvents v21 . 102
7.5 powerEvents v20 . 103
7.6 powerEvents v19 . 105
7.7 powerEvents v18 . 105

ii

CHAPTER

ONE

INSTALLATION

1.1 Requirements

As powerEvents is an extension to Vault Applications, the Vault system requirements defined by Autodesk leads.

Operating System: 64-bit only

• Microsoft Windows 10

• Microsoft Windows 11

Autodesk Vault Client: 2024 / 2023 / 2022 / 2021

• Vault Professional

• Vault Workgroup

Windows PowerShell: PowerShell 4.0 or higher

powerVault: is installed automatically

1.2 Setup

The powerEvents setup is delivered as an executable and accepts the standard windows installer arguments documented
here.
To accept the products EULA when starting the setup in silent mode pass the ACCEPT_EULA=1 argument:

"\\path\to\networklocation\powerEvents24.0_Vault2024.exe" -silent ACCEPT_EULA=1

1.3 Windows permissions

In order to execute and synchronize distributed scripts and modules properly, the current windows user needs the
following rights on:

Path Required Rights
C:\ProgramData\coolOrange\ Read, Write and Delete data

1

http://knowledge.autodesk.com/support/vault-products/troubleshooting/caas/sfdcarticles/sfdcarticles/System-requirements-for-Autodesk-Vault-products.html
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-5.1
https://doc.coolorange.com/projects/powervault/en/stable/
https://docs.microsoft.com/en-us/windows/desktop/Msi/command-line-options

powerEvents

1.4 Install Locations

powerEvents is installed in the following locations on your system:

• All program libraries and executable files are placed in C:\ProgramData\Autodesk\[Vault Ver-
sion]\Extensions\powerEvents

• The Cmdlets will be installed to C:\Program Files\coolOrange\Modules\powerEvents

• All client customization files, e.g. scripts and module libraries, are placed in C:\ProgramData\coolOrange\Client
Customizations

• The script C:\ProgramData\coolOrange\Publish-Customizations.ps1 helps distribute the client customizations
to other Vault environments

Following shared libraries are installed in GAC:

• coolOrange.logging.dll

• coolOrange.VaultServices_[Vault Version].dll

Following shortcuts are added in the start menu:

• powerEvents Configuration - Opens the directoy with the files of the different client customizations

• powerEvents ISE - Opens the IDE and opens a sample script

• powerEvents Information - Opens the About dialog with product related information

• powerEvents License Information - Opens the License Information dialog to activate the product

• powerEvents Logs - Opens the log file location

1.5 Updates

To install a newer version of powerEvents just execute the setup file of the new version. This will automatically update
the files in the existing installation.
Please note that also sample customizations (and standard scripts for powerJobs Client) will be updated.

If a tested version of your customizations has already been distributed to other workstations, it is therefore recom-
mended to run the update on one environment first.
Then start a Vault application to test possible changes. In case of local modifications a warning box will remind to
publish the new version of customizations to your Vault Server.
Afterwards, the new powerEvents version can also be installed on all other environments without notifying Vault users
again about the already confirmed changes.

Note: When upgrading from versions v23.0.9 or earlier with enabled sample scripts these scripts are automatically
reverted to their original state after the update.

To re-enable sample scripts that have been enabled manually on the previous install, move them from %Program-
Data%/coolOrange/Client Customizations/Disabled to %ProgramData%/coolOrange/Client Customizations .

2 Chapter 1. Installation

https://doc.coolorange.com/projects/licensing/en/18.3/license_information/

powerEvents

1.6 Uninstall

To remove powerEvents from a computer one perform of the following steps :

• Execute the setup file again. This will give you the option to repair or remove powerEvents. Click on “Remove”
to uninstall the program.

• Go to “Control Panel - Programs and Features”, find “coolOrange powerEvents for Vault” and run “Uninstall”.

1.6. Uninstall 3

powerEvents

4 Chapter 1. Installation

CHAPTER

TWO

ACTIVATION AND TRIAL LIMITATIONS

2.1 Trial limitations

There is no difference in functionality between the trial version and the fully licensed product.
After the installation the product is available as a trial version for 30 days.

2.2 Activation

The product can be activated during or after successfully evaluating the product.
For manually activating the product following Dialog can be used:

2.2.1 License Information

Open the Start Menu and click the ‘powerEvents 23.0 License Information’ shortcut:

5

powerEvents

2.2.2 Command-line

Launch the License Information tool located in the install directory with the required Command-line arguments.
Example: Activating a Stand-Alone license using a serial number:

"C:\Program Files\coolOrange\Modules\powerEvents\License.exe" --StandAlone --
→˓Serialnumber="XXXXX-XXXXX-XXXXX-XXXXX"

For more information about activating the product, see Licensing.

2.3 Licensing Options

2.3.1 Stand Alone Licensing

This product supports the Stand-Alone licensing model which is charged based on the time the license is valid and the
number of seats the license is valid for.
For further information see the detailed description of the Stand-Alone licensing model.
In the License Information Dialog the remaining days until the license expires can be found.

License expired

When the license expires, powerEvents displays a Windows notification about the expired license when the application
is started and no longer executes actions:

• Vault Client tabs added by the Add-VaultTab cmdlet stop working and no longer display the content from the
-Action parameter.

• Vault Client and Inventor menu items added by the Add-VaultMenuItem cmdlet or the Add-InventorMenuItem
cmdlet stop working and no longer execute the -Action parameter.

• All registered Vault events are restricted in order to block the configured processes of the Vault user.

Offline activation

The serial number of the license and the machine code are required to generate an activation file.
The activation file for an offline activation can be generated and downloaded on the following site: powerEvents -
Activation file generator

6 Chapter 2. Activation and Trial limitations

https://doc.coolorange.com/projects/licensing/en/18.3/license_activation/#activating-via-command-line
https://doc.coolorange.com/projects/licensing/en/18.3/licensingmodels/#standalone
https://doc.coolorange.com/projects/licensing/en/18.3/license_activation/#activate-license
https://doc.coolorange.com/projects/licensing/en/18.3/licensingmodels/#standalone
https://doc.coolorange.com/projects/licensing/en/18.3/license_information/
https://doc.coolorange.com/projects/licensing/en/18.3/license_information/
https://doc.coolorange.com/projects/licensing/en/18.3/license_activation/#offline-activation
https://app.cryptolens.io/Form/A/6kR1DChe/367
https://app.cryptolens.io/Form/A/6kR1DChe/367

CHAPTER

THREE

GETTING STARTED

3.1 Sample scripts

Installed Client Customizations demonstrate possible automation processes and guardrails when working with Vault
applications. They let you see the capabilities of the product in common scenarios.
The sample scripts are customizable and can be used as a template to easily create your own scripts to fit specific
customer requirements.

One of these samples, Sample.ValidateProperties is intended to show how custom code can be executed on Vault
lifecycle state transitions.

3.2 Activating a sample script

Sample scripts are disabled by default.
However, thanks to their modular structure, an individual script like C:\ProgramData\coolOrange\Client Customiza-
tions\Disabled\Sample.ValidateProperties.ps1 can be easily enabled.
Just move it to the directory C:\ProgramData\coolOrange\Client Customizations:

7

powerEvents

3.3 Testing the script

The goal of the Sample.ValidateProperties script is to prevent a user from releasing a file that has recently been
changed by an other user.
Testing this customization requires two different Vault accounts.

Start the Vault Client and log in with the first account (in this example “Administrator” is used).
Navigate to a file and change the lifecycle state to a non-release state.
In this example the state of Intake Casing.ipt is changed to “For Review”:

Changing Vault account
Log out by going to “File” -> “Log Out” and log in again with the second Vault account.

Releasing file
Navigate back to previously changed file and try to change its lifecycle state to a released state. In this example the state
of Intake Casing.ipt is changed to “Released”:

8 Chapter 3. Getting started

powerEvents

Result
The lifecycle transition for Intake Casing.ipt to the “Released” state is blocked by a powerEvents restriction
because the latest modification was performed by a different Vault account (“Administrator” in this example) and the
second Vault account is now trying to release the file:

3.3. Testing the script 9

powerEvents

10 Chapter 3. Getting started

CHAPTER

FOUR

CLIENT CUSTOMIZATIONS

4.1 Sample.RestrictDisturbingSubmittedJobs

Autodesk Vault environments give users the possibility to submit Jobs while they work with their files, but they are not
always processed immediately.
As a result, it often happens that they either fail or don’t produce the expected results if users continue to work with
their files in Vault.

To prevent these problems, this client customization helps for example in the following situations:

• When new file versions are created after jobs have been submitted for that file, many Autodesk jobs simply fail.
A common error that you can then see is e.g. “Sync properties not allowed on non-tip versions”.
Autodesk recommends “Administrators can ignore, delete, or filter out this type of error.”

Solution:
So that it doesn’t even come to the situation that all the jobs fail and fill up the Job Queue, Vault users can also
be informed and restricted from creating new file versions, as long as there are still open jobs in the Job Queue.

• If powerJobs Processor jobs have been queued at certain lifecycle transitions, such as releases, and in the
meantime the status of the file has been reset or changed (e.g. to “Work in Progress”) then many Vault users
forget about their still open jobs within the Job Queue.
By default those jobs will be executed for the latest file version, and newly created visualization files may contain
incorrect data (e.g. State) and are not attached to the released file version.

Solution:
To prevent this from happening, Vault users can also be prevented from changing the file status if jobs must be
processed beforehand.

Therefore this sample script registers to the UpdateFileStates event and adds Restrictions when the lifecycle state of a
file changes, while jobs were queued for it.
This way Lifecycle transitions are prevented for all files, for which jobs have been submitted and have not yet been
processed successfully.

11

https://knowledge.autodesk.com/support/vault-products/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Vault-Admin/files/GUID-CDD7E780-3322-4560-AA31-43025A845824-htm.html
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/#queueing-jobs

powerEvents

4.1.1 Testing

In the default delivery the script is disabled and located in the %PROGRAMDATA%\coolOrange\Client Customiza-
tions\Disabled folder.
The customization can be tested by following these steps:

1. Enable the script by moving it to the directory %PROGRAMDATA%\coolOrange\Client Customizations.

2. Pause all active Job Processors during the test to ensure that the queued Synchronize Properties job will not be
processed upfront.

3. Open the Vault Client.

4. Make sure the action “Synchronize properties using Job Server is enabled for a desired Lifecycle transition to a
“Released” state.

5. Navigate to an Inventor- or AutoCAD file and change its Lifecycle State to the previously configured “Released”
state

6. Open the Job Queue and make sure that a “Autodesk.Vault.SyncProperties” job has been automatically submitted
for the released file version.

7. Change the Lifecycle State of the selected file again to any other state.

8. A restriction dialog appears and informs about the still active Synchronize Properties job, which would fail if a
new file version gets created.

4.2 Sample.ValidateProperties

This sample script registers to the UpdateStates events for the entity types: File, Item and ChangeOrder.
The event is triggered when the lifecycle state of an entity is changed.

In our example we make use of the Restrictions event:

• In the Restrictions event we check if the state is about to be changed to Released or in case of a ChangeOrder to
Closed.

• We also check if the user who is changing the state is the same who last modified the entity. If one of these rules
is violated a restriction will be set.

4.2.1 Testing

In the default delivery the script is disabled and located in the %PROGRAMDATA%\coolOrange\Client Customiza-
tions\Disabled folder.
The customization can be tested by doing the following steps:

1. Enable the script by moving it to the directory %PROGRAMDATA%\coolOrange\Client Customizations.

2. Open the Vault Client.

3. Navigate to an Item, File or Change Order which can be released and was last modified by another Vault user.

4. Change the Lifecycle State to “Released” (or “Closed” for Change Orders).

5. A restriction dialog appears informing the user that the Lifecycle State of the entity can’t be released (or closed)
as it was most recently edited by another user.

12 Chapter 4. Client Customizations

https://knowledge.autodesk.com/support/vault-products/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Vault-Admin/files/GUID-4D34EE99-3A58-4EDD-BD76-BD99C232E90A-htm.html?st=job%20update%20view

powerEvents

4.3 SubmitJobsOnLifecycleTransition

This client customization is intended to be used in combination with the powerJobs Settings Dialog to configure auto-
matic queueing of jobs based on certain lifecycle transitions and filter conditions.

Requires powerJobs Processor

The SubmitJobsOnLifecycleTransition script relies on the configuration from the Job Triggers section of the power-
Jobs Settings Dialog to work properly.
This requires minimum version of powerJobs Processor 23.0.1

The user performing the action must have the Vault Get Options permission to retrieve the trigger settings configured
with the powerJobs Settings Dialog.

This script makes use of the following Vault events:

• UpdateFileStates event which is triggered when the lifecycle state of a File changes

• UpdateItemStates event which is triggered when the lifecycle state of an Item changes

• UpdateChangeOrderState event which is triggered when the lifecycle state of a Change Order changes

• UpdateCustomEntityStates event which is triggered when the lifecycle state of a Custom Object changes

The script registers Post Event handlers for every above mentioned event and queues the configured job if an entity
matches all of the following conditions:

• The ‘update status’ operation was successful

• One or more of the affected entities transitioned to a configured lifecycle state

• All of the configured filters match for an entity

• If the powerJobs Processor Sample.CreateDXF&STEPfromSheetmetal job is configured to be queued, additional
checks are performed.
The Vault environment must be configured correctly for the script be able to determine the document type.

4.3.1 Vault Configuration

In order to identify sheet metal parts a Vault UDP (User defined property) must be configured to differentiate between
document types (i.e. Sheet Metal or regular part, Weldment or regular Assembly).
The User Defined Property must be mapped to the Inventor iProperty Document Sub Type Name (only works with
an English or German Inventor/Vault) or to the Inventor iProperty Document Sub Type which contains the required
information.
The name of the User Defined Property is automatically determined by script.

To configure the required mapping in Vault, navigate to Tools -> Administration -> Vault Settings -> Behaviors tab ->
Properties -> New
Define the name for the new UDP (e.g. Document SubType) and select the categories used for Sheet Metal parts, so it
will be automatically listed in the properties panel.
Switch to the Mappings tab and create a new mapping for the provider “Inventor” and select the Doc Sub Type or
Doc Sub Type Name (only works with an English or German Inventor/Vault) Inventor property.

4.3. SubmitJobsOnLifecycleTransition 13

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-automatically-on-lifecycle-state-changes
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-automatically-on-lifecycle-state-changes
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/change_logs/powerJobsProcessor_v23/#v23-0-1

powerEvents

Autodesk Knowledge Tutorial: Mapping Inventor iProperty to Vault user defined property

4.3.2 Testing

This customization can be tested by performing the following steps:

1. Open the Vault Client, open the powerJobs Settings Dialog and navigate to the Job Triggers section of the dialog.
Configure a job to be queued on a lifecycle transition.

2. Navigate to an entity of the selected type (e.g. file)

3. Change the Lifecycle State to the configured state

4. Open the Job Queue

5. The Job Queue contains a configured job for the changed file with the set description and priority

Out of the box this client customization is enabled.

14 Chapter 4. Client Customizations

https://knowledge.autodesk.com/support/inventor/learn-explore/caas/screencast/Main/Details/5e4a9bf8-496d-46cb-9090-799c50e32039.html
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-automatically-on-lifecycle-state-changes

powerEvents

When the script is not used it can by disabled by moving it to the %PROGRAMDATA%\coolOrange\Client Customiza-
tion\Disabled folder.

4.4 SubmitJobsOnVaultMenuItemClick

This client customization is intended to be used in combination with the powerJobs Settings Dialog to configure the
Vault Explorer to queue jobs directly from the Vault Context Menu for Files, Items and Change Orders.

Requires powerJobs Processor

The SubmitJobsOnVaultMenuItemClick script relies on the configuration from the Job Triggers section of the pow-
erJobs Settings Dialog to work properly.
This requires minimum version of powerJobs Processor 23.0.3

The user that is logged in to Vault must have the Vault Get Options permission to access the context menus con-
figured with the powerJobs Settings Dialog.

The script action gets executed on the LoginVault event and makes use of the Add-VaultMenuItem cmdlet to add context
menu items for each job that has a context menu trigger enabled in the Job Triggers section in the powerJobs Settings
Dialog.

• When the user clicks the menu item, jobs are only queued when the selected entity matches all of the filters
configured in the powerJobs Settings Dialog

• The SubmitJobsOnVaultMenuItemClick script is only executed when used in the Vault Explorer.

• A dialog is displayed when none of the selected entities matches the filters and therefore no jobs were queued.

• If the powerJobs Processor Sample.CreateDXF&STEPfromSheetmetal job is configured to be queued, additional
checks are performed.
The Vault environment must be configured correctly for the script be able to determine the document type.

• The script is only executed once, when the user logs in to Vault for the first time.

4.4.1 Vault Configuration

In order to identify sheet metal parts a Vault UDP (User defined property) must be configured to differentiate between
document types (i.e. Sheet Metal or regular part, Weldment or regular Assembly).
The User Defined Property must be mapped to the Inventor iProperty Document Sub Type Name (only works with
an English or German Inventor/Vault) or to the Inventor iProperty Document Sub Type which contains the required
information.
The name of the User Defined Property is automatically determined by script.

To configure the required mapping in Vault, navigate to Tools -> Administration -> Vault Settings -> Behaviors tab ->
Properties -> New
Define the name for the new UDP (e.g. Document SubType) and select the categories used for Sheet Metal parts, so it
will be automatically listed in the properties panel.
Switch to the Mappings tab and create a new mapping for the provider “Inventor” and select the Doc Sub Type or
Doc Sub Type Name (only works with an English or German Inventor/Vault) Inventor property.

4.4. SubmitJobsOnVaultMenuItemClick 15

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-manually-by-context-menu-item
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-manually-by-context-menu-item
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/change_logs/powerJobsProcessor_v23/#v23-0-3
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/

powerEvents

Autodesk Knowledge Tutorial: Mapping Inventor iProperty to Vault user defined property

4.4.2 Testing

The customization can be tested by performing the following steps:

1. Open the Vault Client, open the powerJobs Settings Dialog and navigate to the Job Triggers tab of the dialog.
Then navigate to the Context Menu Trigger section and enable it.

2. Restart the Vault Client for the changes to take effect

3. Navigate to an entity of the selected type (e.g. File)

4. Right-click the entity, expand the sub-menu “powerJobs Client” and click on the menu item to queue the job

5. To verify the job Job Queue can be opened and it should contain a job for the selected entity with the configured
job type, description and priority

16 Chapter 4. Client Customizations

https://knowledge.autodesk.com/support/inventor/learn-explore/caas/screencast/Main/Details/5e4a9bf8-496d-46cb-9090-799c50e32039.html
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-manually-by-context-menu-item

powerEvents

Out of the box this client customization is enabled.
When the script is not used it can by disabled by moving it to the %PROGRAMDATA%\coolOrange\Client Customiza-
tion\Disabled folder.

As an add-in for Vault Client and CAD applications, powerEvents enables easy and powerful customization of Vault
functionality with additional workflows, guardrails, automations, tabs and more.

This is done via various PowerShell scripts and modules which are executed in every Vault application.
The directory containing these customizations can be opened using the powerEvents Configuration shortcut on the
desktop or in the Start Menu.

Since powerEvents is an IWebServiceExtension all the customization scripts will be executed in any application that
uses the Autodesk.Connectivity.WebServices.dll:

• Vault Client

• Inventor with Vault Add-in

• AutoCAD with Vault Add-in

• AutoLoader

• powerVault

• *at the moment also in the JobProcessor and powerJobs Processor

4.5 Scripts

All PowerShell scripts, which should be executed automatically when Vault applications are launched, must be placed
in the %PROGRAMDATA%\coolOrange\Client Customizations directory.
This directory contains scripts that ensure all settings in the powerJobs Settings Dialog for submitting jobs, also take
effect on the workstations:

• SubmitJobsOnLifecycleTransition.ps1

• SubmitJobsOnVaultMenuItemClick.ps1

In addition the directory consists of two sample scripts, both starting with the name ‘Sample.’. They are disabled by
default and are therefore located in a subdirectory named ‘Disabled’:

• Sample.RestrictDisturbingSubmittedJobs.ps1

• Sample.ValidateProperties.ps1

Their purpose is to demonstrate possible automation processes when working with the Vault Client and to help you get
started creating your own scripts.

The goal of all these customization scripts is to cover some common workflows and be easy to configure.

4.5.1 Enable or Disable scripts

The modular structure of scripts allows to easily disable or active individual customizations.
To do this, the corresponding script can simply be moved to the %PROGRAMDATA%\coolOrange\Client Customiza-
tions\Disabled directory to turn it off, or back to the Client Customizations folder to re-enable it.
Scripts placed in the Disabled folder remain disabled after product updates.

4.5. Scripts 17

https://doc.coolorange.com/projects/powervault/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/#powerjobs-settings-dialog

powerEvents

4.5.2 Create or edit scripts

When creating your own client customization, it is recommended to copy a sample script and modify it to your needs.
It is not necessary to restart the application, because all customizations (scripts and modules) are automatically reloaded
by default when a change is detected.

In order to get started with creating your own script either open any PowerShell IDE or the powerEvents ISE shortcut
in the start menu, which already opens one of the sample scripts.
The powerEvents module can be imported with Import-Module powerEvents.

Keep in mind, that code in the scripts is executed while the Vault application is launched, and thus no Vault connection
is available.
A Vault connection (required for powerVault Cmdlets) is only available during the execution of a registered Vault event,
in Vault tab actions, or when you click buttons in the Vault Client menu or Inventor ribbon.
Therefore, the use of most powerVault Cmdlets is possible only in such -Action script blocks or functions.

4.5.3 Debug scripts

As mentioned above, individual scripts can be opened for debugging in the Windows PowerShell ISE and then simply
executed by pressing F5.

It is also possible to attach the debugger to another process that hosts PowerShell. This allows debugging customization
scripts that run in a Vault Client or CAD application.
Here, the Windows PowerShell ISE is used again, as this tool is already integrated into Windows environments. How-
ever, the informations are also helpful when using other PowerShell IDEs such as Visual Studio Code.
In the Console Pane, run the following commands to attach to a running Vault Client process:

Enter-PSHostProcess -Name 'Connectivity.VaultPro' # or first run Get-PSHostProcessInfo␣
→˓to get the list of PowerShell hosts running on the local computer

Debug-Runspace -Name 'coolOrange'

For subsequent script executions, the debugger stops automatically in the according customisation script. Note: After
the execution, however, the debugger is detached and must be readded to pause in additional executions (STRG+C and
repeat Debug-Runspace).

Alternatively, by adding the following line in a problematic script area, the debugger pauses exactly there as soon as
this change is reloaded:

18 Chapter 4. Client Customizations

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/ise/how-to-debug-scripts-in-windows-powershell-ise?view=powershell-5.1
https://devblogs.microsoft.com/scripting/debugging-powershell-script-in-visual-studio-code-part-1/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/debug-runspace?view=powershell-5.1#notes

powerEvents

if([System.Management.Automation.Runspaces.Runspace]::DefaultRunSpace.Debugger.IsActive)
→˓{ Wait-Debugger }

Debugging can then be continued in single-step mode (F11) or new breakpoints (F9) can be reached after continuing
script execution (F5), allowing to inspect the values of current variables.

4.6 Modules

PowerEvents is delivered with module scripts which are installed in the powerEvents module directory %Program-
Data%\coolOrange\Client Customizations\Modules.

The Common.psm1 module provides the $processName variable which is available in all customization scripts.
This variable returns the name of the process in which the script is currently executed.
The global flag $powerEvents_ReloadPsScripts can be used to disable the automatic script reloading:

$global:powerEvents_ReloadPsScripts = $false

The JobTriggerSettings.psm1 modules provides functions required in the SubmitJobsOnLifecycleTransition.ps1 and
SubmitJobsOnVaultMenuItemClick.ps1 scripts.
The IsSheetMetalPart() function can be used to check whether a file is sheet metal part. In order for the function to
check this, at least one of the following two Inventor iProperties must to be mapped to a Vault property:

• ‘Document SubType Name’

• ‘Document SubType’

The respective Vault Configuration sections describe in detail how the Inventor iProperties should be mapped in Vault.

4.7 Errors

powerEvents notifies the Vault user about Terminating Errors that occur during application startup, when executing
customization Scripts and Modules.
In this case the configured processes might not be executed successfully, because of missing Vault event registrations.
Even if the execution of one script fails, this has no effect on other scripts as they are executed independently.

In order to raise exceptions manually you can use Powershell’s throw keyword and you can handle them by using
try/catch blocks:

Register-VaultEvent -EventName EditItems_Pre -Action {
try {

$vault.ItemService.EditItems($null)
}
catch {

throw "A null value was passed in where a null value is not allowed␣
→˓(Vault error code: 155)."

}
}

Also if a registered Vault event is raised, and only then an exception occurs within the action (as in the previous
example), an Error Message Box will be shown.
Details of the failed event execution are displayed directly after the PowerShell execution terminates:

4.6. Modules 19

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/terminating-errors
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_throw?view=powershell-6

powerEvents

This happens every time an event is triggered by a Vault API method and has no effect on any other registered Vault
events as they will still be executed.

The same details and all the Warnings and Errors that where logged during the script execution can be found in the
logfile.

Note that PowerShell executions continue for Non-Terminating Errors by default.
For changing this error handling behavior globally, the variable $ErrorActionPreference can be changed to ‘Stop’ in
order to terminate the script execution even for such errors:

$ErrorActionPreference = "Stop"

In case a Vault operation aborts because a Vault Server Error Code was returned the according Post event can make
use of the $successful variable in order to check if the underlying Vault Web Service call was successful or not.

Register-VaultEvent -EventName EditItems_Post -Action {
param($items, $successful)

if(-not $successful) {
return

}
#...

}

20 Chapter 4. Client Customizations

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/non-terminating-errors

powerEvents

4.8 Distribution

Once the local client customisations have been successfully tested, they can be easily shared to other Vault workstations
by installing the coolOrange Customization Server on the Autodesk Data Management Server and powerEvents on all
workstations.
Then simply run the script Publish-Customizations.ps1 in the directory C:\ProgramData\coolOrange, which pub-
lishes all these scripts and modules for this Vault Server.
From this point on, your client customizations are automatically downloaded to all workstations as soon as the Vault
Client or any other application that connects to the Vault Server is launched.

The distribution mechanism is based on the popular version control system Git, but does not require a git installation.
Simplified functions for publishing and synchronizing customizations are even designed to help Git-experienced script-
ing guys.

Publish Customizations:
By running the Publish-Customizations script, the local C:\ProgramData\coolOrange directory is automatically linked
to the Git repository http://{Your_Vault_Server}/customizations/coolOrange.git.
By default, the Vault Server against which the current customizations were tested is used, meaning the currently (or
lastly) connected Vault Server.
To directly publish from any PowerShell IDE, the following command can be used:

Import-Module powerEvents

Publish-Customizations

OR to use a specific Server instead of the lastly connected ADMS or the currently␣
→˓connected 'Open-VaultConnect -Server' (e.g. for automations where the Vault Client has␣
→˓perhaps never been logged on to a server before):
Publish-Customizations -Server {Your_Vault_Server}

Note that only files located in the directory %PROGRAMDATA%\coolOrange\Client Customizations are published!
Other product directories (such as Jobs) are ignored.
After distribution, each Vault application launch informs about changes in this directory that may still need to be
published.
This way, local fixes or improvements to client customizations can be easily distributed from any Vault environment
by running the publishing script.
Also if newer script or module versions have already been published by teammates, it helps to ensure that these are
retrieved without changes being lost or accidentally overwritten. If conflicts occur, they have to be resolved and tested
before the changes can be re-published.
Git tools and Visual Studio Code integrations offer excellent support here in particular.
After executing the Publish-Customizations script once, all the necessary settings are made (a .git folder is created) to
use all these tools seamlessly.

Synchronizing Customizations:
During the start of Vault applications, all local scripts and modules are updated to the latest version available on the
connected Vault Server.
The synchronised changes will then take effect immediately and are therefore used even if the coolOrange Customization
Server would become unavailable for some reason.
In the case such distribution problems occur, Vault users immediately recognise an Error Message Box with additional
details, that help in resolving the issue effectively.

The synchronization also allows published customizations to be automatically distributed to new workstations simply
by installing powerEvents.
Right at the first Vault start, all default-installed sample scripts and modules (as well as the standard scripts for power-
Jobs Client), will be replaced with your published customizations.

4.8. Distribution 21

https://doc.coolorange.com/projects/customizationserver/en/stable/installation/
https://git-scm.com/
http://localhost/customizations/coolOrange.git
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line?platform=windows
https://code.visualstudio.com/docs/sourcecontrol/overview#_merge-conflicts
https://doc.coolorange.com/projects/customizationserver/en/stable/installation/
https://doc.coolorange.com/projects/customizationserver/en/stable/installation/

powerEvents

Please also see our update notes for further details.

Warning: Please do not uninstall the coolOrange Customization Server on the Autodesk Data Management
Server, for example, after a project Go-Live.
All Vault environments that have retrieved client customization from that Vault Server in the past, would warn the
Vault users about the failing distribution!

Stopping a synchronization is only possible by removing the C:\ProgramData\coolOrange\.git directory on all
workstations.

22 Chapter 4. Client Customizations

https://doc.coolorange.com/projects/customizationserver/en/stable/installation/

CHAPTER

FIVE

CODE REFERENCE

5.1 Cmdlets

5.1.1 Add-InventorMenuItem

Add a menu item to an Inventor menu with an Action that is invoked when the menu item is clicked.

Syntax

Add-InventorMenuItem -Name <String> -Action <Scriptblock | String> [<CommonParameters>]

Parameters

Type Name Description Default
Value

Op-
tional

String Name Display name of the menu item displayed in the Inventor tab no

Scriptblock /
String

Ac-
tion

Script block or function name that is executed when the menu
item is clicked.

no

Warning: Name must be unique

When multiple menu items are registered, the Name parameter must be unique for each menu item.

Return type

empty

23

powerEvents

Remarks

The cmdlet can be used to extend the Inventor user interface with a new menu item which is displayed in a coolOrange
Tab.
The coolOrange Tab and its menu items will be displayed in the following Inventor Ribbons:

• Part

• Assembly

• Drawing

• Presentations

The script block or function name passed to the Action parameter is invoked when the menu item is clicked.
The PowerShell variables provided by Open-VaultConnection and a $inventor variable are available during the exe-
cution of the registered action to allow access to the Vault and Inventor APIs.

Menu items created by the cmdlet are not permanent, when Inventor is restarted the menus are reset to their original
state.

Calling the cmdlet with the same Name parameter after a menu item has already been added, will update the Action
for the menu item.

Note:

• The cmdlet can only be used when running directly in an Inventor process.

• The cmdlet is executed only after a successful login to Vault, which can be done via the Inventor Vault Add-in.

Examples

Adds a menu item to add a virtual compontent with an overridden Quantity to the structured BOM:

Add-InventorMenuItem -Name "Add oil to BOM" -Action {
$compName = 'Oil'
$document = $inventor.ActiveDocument
$occur = $document.ComponentDefinition.Occurrences
try{

$virtualComponent = $occur.AddVirtual($compName, $inventor.TransientGeometry.
→˓CreateMatrix())

}catch {
Write-Host "Could not add virtual component!"
return

}
$BOM = $document.ComponentDefinition.BOM

if (-not $BOM.StructuredViewEnabled) {
$BOM.StructuredViewEnabled = $True

}
$structBomView = $BOM.BOMViews | Where-Object {$_.ViewType -eq [Inventor.

→˓BOMViewTypeEnum]::kStructuredBOMViewType } | Select-Object -First 1
$bomCom = $structBomView.BOMRows | Where-Object {($_.ComponentDefinitions |␣

→˓Select-Object -First 1).DisplayName -eq $compName}
$bomCom.TotalQuantity = '10'

}

24 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/open-vaultconnection/#remarks
https://help.autodesk.com/view/VAULT/2023/ENU/?guid=GUID-4F4983C3-D02A-4015-B9A6-B51DC13BD74C

powerEvents

Adds a menu item to create new Vault Change Order with current document attached:

Add-InventorMenuItem -Name "Create changeorder" -Action {
$docName = $inventor.ActiveDocument.DisplayName
$file = Get-VaultFile -Properties @{'Name' = $docName}
if($null -eq $file){

Write-Host "Could not find vaulted file for current document: '$docName'"
return

}
$coNumScheme = $vault.NumberingService.GetNumberingSchemes('CO', [Autodesk.

→˓Connectivity.WebServices.NumSchmType]::ApplicationDefault) | Select-Object -First 1
$coNumber = $vault.ChangeOrderService.GetChangeOrderNumberBySchemeId($coNumScheme.

→˓SchmID)
$co = Add-VaultChangeOrder -Number $coNumber
Write-Host "Created ChangeOrder with number '$coNumber'"
if($null -eq (Update-VaultChangeOrder -Number $co._Number -AddAttachments @($file._

→˓FullPath))){
Write-Host "Attaching file to changeorder failed"

}
}

5.1.2 Add-VaultMenuItem

Add a Menu Item to a Vault Explorer menu with an Action that is invoked when the menu item is clicked.

Syntax

Add-VaultMenuItem -Location <VaultExplorerMenu> -Name <String> -Action <Scriptblock |␣
→˓String> [<CommonParameters>]

Parameters

Type Name Description Default
Value

Op-
tional

VaultExplor-
erMenu

Lo-
ca-
tion

Vault Explorer Menu to be extended with the Menu Item no

String Name Display name of the menu item displayed in the Vault Explorer no

Scriptblock /
String

Ac-
tion

Script block or function with one parameter ($entities) that is ex-
ecuted when the menu item is clicked.

no

5.1. Cmdlets 25

powerEvents

VaultExplorerMenu

Enum values:

Name Description
FileContextMenu Context menu (right-click menu) for Files
ItemContextMenu Context menu (right-click menu) for Items
ChangeOrderContextMenu Context menu (right-click menu) for Change Orders
FolderContextMenu Context menu (right-click menu) for Folders
ToolsMenu Tools menu in Vault’s Main Menu toolbar

Warning: Name must be unique

When multiple menu items for the same Location are registered, the Name parameter must be unique for each menu
item.

Return type

empty

Remarks

The cmdlet can be used to extend the Vault Explorer’s menus with custom Powershell code.
The script block or function passed as the Action parameter is invoked with an array of powerVault entities as param-
eter, which contains all selected entities selected in the Vault Client.

Contex menu items
Added menu items are grouped into a sub-menu named “powerJobs Client”.
Depending on the Location of the menu item the objects passed to the -Action can be:

• FileContextMenu: Only File objects

• ItemContextMenu: Only Item objects

• ChangeOrderContextMenu: Only Change Order objects

• FolderContextMenu: Only Folder objects

Tools menu items
Added menu items are appended directly to Vault Explorer’s Tools menu.
Depending on the current selection in the Vault Explorer the object passed to the -Action can be powerVault files,
items or change orders.
Only entities selected in the main Vault Explorer window are passed to the -Action. The selection in other windows
e.g. in the Search dialog or Edit Item window is ignored.

Menu items created by the cmdlet are not permanent, when the Vault Client is restarted the menus are reset to their
original state.
The Menu items cannot be removed nor can the name be updated once they have been added.

Calling the cmdlet with the same Location and Name parameter after a menu item has already been added, will update
the Action for the menu item.

26 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/

powerEvents

Note: The cmdlet can only be used when running directly in a Vault Explorer Process

Examples

The following samples are meant to be saved as .ps1 files in the Client Customizations folder.

Adds a menu item to the File context menu to queue a DWF job if the file type is supported:

function SubmitDWFJob($entities){
foreach($file in $entities){

if($file._Extension -in @('iam', 'ipt', 'ipn', 'idw', 'dwg', 'dxf', 'rvt', 'rfa',
→˓ 'rte', 'nwd', 'nwf', 'nwc', 'ifc')){

Add-VaultJob -Name "Autodesk.Vault.DWF.Create.$($file._Extension)" -
→˓Parameters @{'FileVersionId' = $file.Id} -Priority 10

}else{
[System.Windows.Forms.MessageBox]::Show("File extension '$($file._Extension)

→˓' is not supported!")
}

}
}
Add-VaultMenuItem -Location FileContextMenu -Name 'Queue DWF job' -Action 'SubmitDWFJob'

Adds a menu item to the Item context menu to queue the powerPLM (powerFLC) ‘Sample.TransferItemBOMs’
job:

Add-VaultMenuItem -Location ItemContextMenu -Name "Transfer Item BOM to FLC" -Action {
param($entities)
foreach($item in $entities){

Add-VaultJob -Name "Sample.TransferItemBOMs" -Parameters @{"EntityId"=$item.Id;
→˓"EntityClassId"="Item"} -Description "Transfer Item BOMs for: $($item._Number)"

}
}

Adds a menu item to the Folder context menu to queue the powerJobs Processor ‘Sample.CreatePDF’ job for
all files in the folder:

Add-VaultMenuItem -Location FolderContextMenu -Name "Create PDF's for all files in folder
→˓" -Action {
param($entities)
foreach($folder in $entities){

$files = Get-VaultFiles -Folder $folder._FullPath
foreach($file in $files) {

Add-VaultJob -Name "Sample.CreatePDF" -Parameters @{"EntityId"=$file.Id;
→˓"EntityClassId"="File"} -Description "Create PDF for: $($file._Name)" -Priority 10

}
}

}

Adds tools menu item to open powerEvents log directory with Windows Explorer:

5.1. Cmdlets 27

https://doc.coolorange.com/projects/powerflc/en/stable/
https://doc.coolorange.com/projects/powerflc/en/stable/workflows/transfer_item_boms/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/jobprocessor/jobs/sample_jobs/

powerEvents

Add-VaultMenuItem -Location ToolsMenu -Name "Open Log directory" -Action {
explorer.exe "$env:LOCALAPPDATA\coolOrange\powerEvents\Logs"

}

5.1.3 Add-VaultRestriction

Adds a restriction to block the current operation.

Syntax

Add-VaultRestriction -EntityName <String> -Message<String> [<CommonParameters>]

Parameters

Type Name Description Optional
String EntityName The title or affected object of the restriction. no
String Message The message of the restriction. no

Return type

empty

Remarks

• The Cmdlet makes it possible to block the executing Vault webservice call and upcoming Pre- or Post events.

• It is possible to add multiple restrictions with the same EntityName.

• If a Restriction event has multiple subscribers then the event actions of all subscribers are executed even though
the first subscriber already sets a restriction.

• For Vault events which are raised only for a single entity (e.g CheckoutFile. . .) , the EntityName is not displayed
in the restriction Dialog by the Vault Client.

Note: The Cmdlet is only usable in Vault Restriction events (e.g AddFile_Restrictions, Update-
FileStates_Restrictions. . .).

28 Chapter 5. Code Reference

powerEvents

Examples

Adds a restriction for files which state is trying to be changed to released

Register-VaultEvent -EventName UpdateFileStates_Restrictions -Action {
param($files)
foreach($file in $files)
{

if($file._NewState -eq "Released") {
Add-VaultRestriction -EntityName $file.Name -Message "File state␣

→˓can't be set to released!"
}

}
}

5.1.4 Add-VaultTab

Adding a new Tab for a specific entity type to the Vault Explorer with an Action that is called when the Tab is clicked
or the selection changes in Vault.
The cmdlet provides the possibility to define a user interface for the registered Tab.

Syntax

Add-VaultTab -Name <String> -EntityType <VaultTabEntityType> -Action <Scriptblock |␣
→˓String> [<CommonParameters>]

Parameters

Type NameDescription De-
fault
Value

Op-
tional

String Name Label of the Tab displayed in the Vault Explorer. no

Vault-
TabEn-
tity-
Type

En-
ti-
ty-
Type

The entity type for which the Tab should be displayed. no

Script-
block
/
String

Ac-
tion

Script block or function that gets executed for the currently selected entity in the
Vault Client ($selectedEntity) if the Tab is activated. This can be used to define
or update the Tab interface by simply returning a WPF Control from the script block
or function.

no

5.1. Cmdlets 29

https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.control?view=netframework-4.5

powerEvents

VaultTabEntityType

Enum values:

Name Description
File Tab gets displayed for Files.
Item Tab gets displayed for Items.

Return type

empty

Remarks

The Cmdlet extends the Vault Client’s user interface with a new tab with the specified -Name as its label.
When multiple tabs with the same -Name for the same -EntityType are registered, only the latest registered tab is
displayed.

The script block or the function name passed as -Action parameter is invoked with an powerVault entity that represents
the element that is selected in the Vault Client.
If multiple entities are selected, the first selected entity will be used. Depending on the EntityType of the Tab, the
passed object can be either a file or an item.
The Action is executed every time the Vault user changes a selection while the Tab is visible, or when the Tab is activated
by the user.

The tab content is cleared and the log provides information when:

• unhandled terminating exceptions occur on the hosting applications (Vault Client) UI thread

• the Action returns an invalid WPF Control

Note:

• The cmdlet can only be used when running directly in a Vault Explorer process.

• Created tabs remain available as long as this process exists and disappear again when the Vault Client is restarted.

• Only the use of the cmdlet in client customization scripts ensures that the tab is displayed in every Vault Client
session.

• The Vault Client remembers activated Tabs (based on their position) even after a restart. In this case, the passed
-Action gets invoked immediately after LoginVault event registrations.

30 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://learn.microsoft.com/en-us/dotnet/api/system.windows.controls.control?view=netframework-4.5

powerEvents

Examples

Adds a Tab for files displaying a DataGrid with their FileBom rows:

Add-VaultTab -EntityType File -Name 'Sample File BOM' -Action {
param($selectedFile)

$fileBom = Get-VaultFileBOM -File $selectedFile._FullPath

if(-not $fileBom) {
return BuildFromXaml @'

<StackPanel xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation
→˓">

<Label Content="There are no rows to show in this view."␣
→˓HorizontalAlignment="Center" />

</StackPanel>
'@

}

#Print BOM data as Table like in Inventor
$bomrows_table = BuildFromXaml @'

<DataGrid xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"␣
→˓AutoGenerateColumns="False" IsReadOnly="True">

<DataGrid.Columns>
<DataGridTextColumn Header="Position" Binding="{Binding Bom_

→˓PositionNumber}" Width="60" />
<DataGridTextColumn Header="Number" Binding="{Binding Bom_Part␣

→˓Number}" Width="120" />
<DataGridTextColumn Header="Description" Binding="{Binding␣

→˓Description}" Width="*" />
<DataGridTextColumn Header="Quantity" Binding="{Binding Bom_Quantity}

→˓" Width="60" />
<DataGridTextColumn Header="Unit of Measure" Binding="{Binding Bom_

→˓Unit}" Width="60"/>
</DataGrid.Columns>

</DataGrid>
'@

$bomrows_table.ItemsSource = @($fileBom | sort-object {[int]$_.Bom_PositionNumber})
return $bomrows_table

}

function BuildFromXaml([xml]$xaml){
$xamlReader = New-Object System.Xml.XmlNodeReader $xaml

(continues on next page)

5.1. Cmdlets 31

powerEvents

(continued from previous page)

return [Windows.Markup.XamlReader]::Load($xamlReader)
}

Adds a Tab for items that displays their Thumbnail image:

Add-VaultTab -EntityType Item -Name 'Thumbnail' -Action 'DisplayItemThumbnail'

function DisplayItemThumbnail($selectedItem){
$imageControl = New-Object System.Windows.Controls.Image
$imageControl.Source = $selectedItem._Thumbnail.Image
return $imageControl

}

5.1.5 Register-VaultEvent

Registers an action that gets invoked when the corresponding Vault API event is raised.

Syntax

Register-VaultEvent -EventName <String> -Action <Scriptblock | String> [-
→˓SourceIdentifier <string>] [<CommonParameters>]

Parameters

Type Name Description Default
Value

Op-
tional

VaultEvent Event-
Name

The name of the Vault event to hook up no

Scriptblock /
String

Action The script block or function that becomes executed when the
according Vault event is raised

no

String SourceI-
dentifier

Unique string which represents the registered event, required
for unregister

new
GUID

yes

Return type

Event ← on success
empty ← on failure

32 Chapter 5. Code Reference

powerEvents

Remarks

The Cmdlet registers the passed action to a specific Vault Event.
When a specific method of the Vault API gets called then the according Vault event is fired and powerEvents will
execute the registered PowerShell action for this event.

The Vault user gets notified about the Error when an exception is thrown within a registred script block or function.
This has no effect on all the other registered Vault events that will still become executed.

The information about which event gets raised for the different Vault Web Services calls can be found in the Vault SDK
documentation under Web Service Command Event Mappings.
You can hook to 3 different stages for each event, sorted in the sequence they are executed:

Restrictions

Gets raised before the actual Vault Web Service call started and before the Pre event is raised.
Only in here you have the possibility to add restrictions in order to block the upcoming events.

Pre

Gets fired after the Restrictions event and before the actual Vault Web Service call.
If restrictions where added for this event (could be even another Vault Extension), then the Pre event will not get
executed.

Post

Gets raised after the actual Vault Web Service call was executed, no matter if it was successful or not.
Remember, when restrictions where blocking the execution of the Vault Web Service call, neither the Post event gets
invoked.
Whether the Vault Web Service call to the Vault Server was successful or not can be tested by using the $successful
parameter in your PowerShell function.

Warning: Item and Change Order events are very special and they may behave different than you think, therefore
be sure to know how they behave: Explained here

5.1. Cmdlets 33

powerEvents

Examples

Registers a function that will be executed before the State of a file becomes updated:\

function Add-Log($files) {
Write-Host -Object "$($files[0]._Name)"

}

$event = Register-VaultEvent -EventName UpdateFileStates_Pre -Action "Add-Log"

Write-Host -Object "Registered event with name '$($event.Name)'"

The registered Scripblock will be executed when new files become added:

$event = Register-VaultEvent -EventName AddFile_Post -Action {
param($file, $parentFolder, $successful)

if(-not $successful) { return }
Write-Host -Object "Added file $($file._Name) to the folder '$parentFolder._

→˓FullPath'"
}

5.1.6 Unregister-VaultEvent

Unregisters Vault API events or Vault Client Tab actions so that the registered actions are no longer invoked when the
events are raised.

Syntax

Unregister-VaultEvent [-EventName <String>] [-SourceIdentifier <string>] [
→˓<CommonParameters>]

Parameters

Type Name Description Optional
VaultEvent EventName The name of the Vault event from which to unregister yes
String SourceIdentifier Unregister a specific registration by specifying it’s SourceIdentifier yes

Return type

Event[] ← on success
empty ← on failure

34 Chapter 5. Code Reference

powerEvents

Remarks

The Cmdlet unregisters either specific or all vault events and returns the unregistered events as a result.
That means, when a specific vault event is raised, the registered VaultEvent will not be executed any more.

To unregister a specific registration the result from the Register-VaultEvent cmdlet can be used to detach the registration
via its SourceIdentifier.
When all registrations should be detached from a specific vault event, only the EventName of the Vault event can be
used.

Additionally it is possible to unregister from all Vault API events, Vault Client Tab actions and Menu item Actions by
not specifying any parameters.

Examples

Unregister from a specific registration:

$event = Register-VaultEvent -EventName UpdateFileStates_Post -Action { param($files) }

Unregister-VaultEvent -SourceIdentifier $event.SourceIdentifier

Unregister from the registration after the State of a file become updated:

Register-VaultEvent -EventName UpdateFileStates_Post -SourceIdentifier 'AddLog_on_
→˓UpdateFileStatesPost' -Action "Add-Log"

function Add-Log($file) {
Write-Host -Object "$($file._Name)"
Unregister-VaultEvent -SourceIdentifier 'AddLog_on_UpdateFileStatesPost'

}

Unregisters all the registrations from the AddFile_Post event:

Register-VaultEvent -EventName AddFile_Post -Action {
param($file)

Write-Host -Object "Added file $($file._Name)"

}

function DoNothing($file) {}
Register-VaultEvent -EventName AddFile_Post -Action "DoNothing"

Unregister-VaultEvent -EventName AddFile_Post

Unregisters all event, tab action and menu item action registrations:

Register-VaultEvent -EventName EditItems_Restrictions -Action { ; }
Register-VaultEvent -EventName UpdateFileStates_Post -Action { ; }
Register-VaultEvent -EventName MoveFile_Pre -Action { ; }

Add-VaultTab -Name "File Tab" -EntityType 'File' - Action { ; }
Add-VaultTab -Name "Item Tab" -EntityType 'Item' - Action { ; }
Add-VaultMenuItem -Location ToolsMenu -Name 'Tools menu item' -Action { ; }

(continues on next page)

5.1. Cmdlets 35

powerEvents

(continued from previous page)

Unregister-VaultEvent

5.2 Objects

5.2.1 Event

The Event object is of type PsObject and represents the registration to a specific Vault API event or Vault Client Tab
action.

Syntax

$event.SourceIdentifier

Following properties are available :

Type Name Description
String Name The name of the registered event. For Vault API events this is the corresponding

VaultEvent name, for tabs ‘TabSelectionChanged’ is returned.
String SourceI-

dentifier
Unique string which represents the registered event. Required for Unregister-
VaultEvent.

String /
ScriptBlock

Com-
mand

The PowerShell script which is executed when the event is fired.

Examples

Registered event with Command specified as function name

Name : UpdateFileStates_Restrictions
SourceIdentifier : 6090dbfa-bbb4-4d31-becf-4b63c8111a4f
Command : CanTriggerDwfJob

Properties of an event with Command specified as script block

Name : UpdateFileStates_Post
SourceIdentifier : f4e99f68-fcfb-4d1c-b0df-4ae5611de2b6

Command : {
param()
write-host 'This script block is executed when the Vault event is␣

→˓raised!'
}

36 Chapter 5. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_script_blocks

powerEvents

5.2.2 VaultEvent

The Enum of type powerEvents.Cmdlets.VaultEvent provides a list of all the supported Vault events.

Syntax

[powerEvents.Cmdlets.VaultEvent]::AddFile_Post

Remarks

Each of the following Vault events has its own set of available arguments:

Connection Events

LoginVault

EventNames:

• LoginVault_Post

Remarks:

• If the connection was established, the automatic variable $vaultConnection(provided by powerVault) can be
used in the event action to retrieve the connection information:

$vaultConnection.Server # localhost
$vaultConnection.UserName # Administrator
$vaultConnection.Vault # Vault

Examples:
LoginVault_Post:

Register-VaultEvent -EventName LoginVault_Post -Action 'PostLoginVault'

function PostLoginVault() {
#Write event code here
}

EventNames:

• LoginVault_Post

Remarks:

• If the connection was established, the automatic variable $vaultConnection(provided by powerVault) can be
used in the event action to retrieve the connection information:

$vaultConnection.Server # localhost
$vaultConnection.UserName # Administrator
$vaultConnection.Vault # Vault

Examples:
LoginVault_Post:

5.2. Objects 37

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/open-vaultconnection/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/open-vaultconnection/

powerEvents

Register-VaultEvent -EventName LoginVault_Post -Action 'PostLoginVault'

function PostLoginVault() {
#Write event code here
}

Change Order Events

AddChangeOrder

EventNames:

• AddChangeOrder_Restrictions

• AddChangeOrder_Pre

• AddChangeOrder_Post

Parameters

Type NameDescription
Change-
Order

change-
Order

The changeOrder which should get / is added.Restrictions and Pre: In Restrictions and Pre
you have the all the properties available on the object like _NewNumber, _NewTitle(Item,CO),
_NewDescription(Item,CO), _NewApproveDeadline and NewRouting.Post:In POST you have
the full powerVaultChangeOrder object, because at this point the Change Order exists.

File[] files The Files to be tracked by the Change Order.
Item[] items The Items to be tracked by the Change Order.User Defined Link properties are added and removed

directly on the items.
File[] at-

tach-
ments

Files to be attached to the Change Order.

Com-
ment[]

com-
ments

Multiple comments for the ChangeOrder including there attached files.

Email[]emailsMultiple emails to send out upon completion.
bool suc-

cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

AddChangeOrder event is raised when clicking in Vault Client on New Change Order. . . -> Save.
Afterwards it fires EditChangeOrder.
No CommitChangeOrder is called.

The argument files contains only the files that are directly linked to the ChangeOrder, and not the primary-links of the
linked Items!

The argument comments contains the newly added comments.
A negative Id value is returned in Pre events and even the values for all other properties except Subject (CO), Message
and Attachments can only be retrieved in in Post events.

38 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/email/

powerEvents

Examples:
AddChangeOrder_Restrictions:

Register-VaultEvent -EventName AddChangeOrder_Restrictions -Action
→˓'RestrictAddChangeOrder'

function RestrictAddChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$emails) {

#Write event code here
}

AddChangeOrder_Pre:

Register-VaultEvent -EventName AddChangeOrder_Pre -Action 'PreAddChangeOrder'

function PreAddChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$emails) {

#Write event code here
}

AddChangeOrder_Post:

Register-VaultEvent -EventName AddChangeOrder_Post -Action 'PostAddChangeOrder'

function PostAddChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$emails, $successful) {

#Write event code here
}

CommitChangeOrder

EventNames:

• CommitChangeOrder_Restrictions

• CommitChangeOrder_Pre

• CommitChangeOrder_Post

Parameters

5.2. Objects 39

powerEvents

Type NameDescription
Change-
Order

change-
Order

The changeOrder which should get / is commited.Restrictions and Pre: In Restrictions and
Pre you have the future data set on this object like _NewNumber, _NewTitle(Item,CO),
_NewDescription(Item,CO), _NewApproveDeadline and NewRouting.Post:In POST
you have the previous properties available through _OldNumber, _OldTitle(Item,CO),
_OldDescription(Item,CO), _OldApproveDeadline and OldRouting.

File[] files The Files to be tracked by the Change Order.
Item[] items The Items to be tracked by the Change Order.User Defined Link properties are added and removed

directly on the items.
File[] at-

tach-
ments

Files to be attached to the Change Order.

Com-
ment[]

com-
ments

Multiple comments for the ChangeOrder including there attached files.

User[] routin-
gUsers

All the users with the associated routing roles for this Change Order.

Email[]emailsMultiple emails to send out upon completion.
bool suc-

cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

CommitChangeOrder event is raised when clicking in the Change Order dialog on Save. Afterwards it fires Ed-
itChangeOrder.

The argument files contains only the files that are directly linked to the ChangeOrder, and not the primary-links of the
linked Items!

The argument emails only contains the emails of the current commit, and not the once added before!

The argument comments contains the current comments and the newly added comments.
A negative Id value is returned in Pre events and even the values for all other properties except Subject (CO), Message
and Attachments can only be retrieved in in Post events.

Examples:
CommitChangeOrder_Restrictions:

Register-VaultEvent -EventName CommitChangeOrder_Restrictions -Action
→˓'RestrictCommitChangeOrder'

function RestrictCommitChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓ $routingUsers, $emails) {

#Write event code here
}

CommitChangeOrder_Pre:

Register-VaultEvent -EventName CommitChangeOrder_Pre -Action 'PreCommitChangeOrder'

function PreCommitChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$routingUsers, $emails) {

(continues on next page)

40 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/user/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/email/

powerEvents

(continued from previous page)

#Write event code here
}

CommitChangeOrder_Post:

Register-VaultEvent -EventName CommitChangeOrder_Post -Action 'PostCommitChangeOrder'

function PostCommitChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$routingUsers, $emails, $successful) {

#Write event code here
}

DeleteChangeOrders

EventNames:

• DeleteChangeOrders_Restrictions

• DeleteChangeOrders_Pre

• DeleteChangeOrders_Post

Parameters

Type Name Description
Change-
Order[]

changeOrders (deleted-
ChangeOrders in POST)

The changeOrders which should get / are deleted.

bool successful Post:The information whether the Web Service call was successful
or not is only available in Post events.

Examples:
DeleteChangeOrders_Restrictions:

Register-VaultEvent -EventName DeleteChangeOrders_Restrictions -Action
→˓'RestrictDeleteChangeOrders'

function RestrictDeleteChangeOrders($changeOrders) {
#Write event code here

}

DeleteChangeOrders_Pre:

Register-VaultEvent -EventName DeleteChangeOrders_Pre -Action 'PreDeleteChangeOrders'

function PreDeleteChangeOrders($changeOrders) {
#Write event code here

}

DeleteChangeOrders_Post:

Register-VaultEvent -EventName DeleteChangeOrders_Post -Action 'PostDeleteChangeOrders'

(continues on next page)

5.2. Objects 41

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/

powerEvents

(continued from previous page)

function PostDeleteChangeOrders($deletedChangeOrders, $successful) {
#Write event code here

}

EditChangeOrder

EventNames:

• EditChangeOrder_Restrictions

• EditChangeOrder_Pre

• EditChangeOrder_Post

Parameters

Type Name Description
Change-
Order

change-
Order

The Change Order which should get / is in edit mode.

bool successful Post:The information whether the Web Service call was successful or not is only avail-
able in Post events.

Unexpected Behaviour

EditChangeOrder event is raised when selecting a Change Order within the Vault Client and cliching on Edit.

Examples:
EditChangeOrder_Restrictions:

Register-VaultEvent -EventName EditChangeOrder_Restrictions -Action
→˓'RestrictEditChangeOrder'

function RestrictEditChangeOrder($changeOrder) {
#Write event code here

}

EditChangeOrder_Pre:

Register-VaultEvent -EventName EditChangeOrder_Pre -Action 'PreEditChangeOrder'

function PreEditChangeOrder($changeOrder) {
#Write event code here

}

EditChangeOrder_Post:

Register-VaultEvent -EventName EditChangeOrder_Post -Action 'PostEditChangeOrder'

function PostEditChangeOrder($changeOrder, $successful) {
#Write event code here

}

42 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/

powerEvents

UpdateChangeOrderState

EventNames:

• UpdateChangeOrderState_Restrictions

• UpdateChangeOrderState_Pre

• UpdateChangeOrderState_Post

Parameters

Type Name Description
Change-
Order

change-
Order

The updated / updating Change Order for a LifeCycle.Restrictions and Pre: In Restrictions and Pre
you have the future data set on this object like _NewStateEntered.Post:In POST you can retrieve
the previous information by using the properties _OldState and _OldStateEntered.

string ac-
tiv-
ity

The activity being completed.

Com-
ment[]

com-
ments

Multiple comments for the ChangeOrder including there attached files.

Email[]emails Multiple emails to send out upon completion.
bool suc-

cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

UpdateChangeOrderState event is raised when clicking on Submit/Approve, in general when the State/Activity is
changed.

When fired by Vault Client then the property _NewStateEntered from the argument changeOrder is the StateEntered
of the current ChangeOrder!

Each comment in the argument comments provide negative Ids and only Subject (CO), Message and Attachments
values can be retrieved. All other data is unavailable, even in Post events.

Examples:
UpdateChangeOrderState_Restrictions:

Register-VaultEvent -EventName UpdateChangeOrderState_Restrictions -Action
→˓'RestrictUpdateChangeOrderState'

function RestrictUpdateChangeOrderState($changeOrder, $activity, $comments, $emails) {
#Write event code here

}

UpdateChangeOrderState_Pre:

Register-VaultEvent -EventName UpdateChangeOrderState_Pre -Action
→˓'PreUpdateChangeOrderState'

function PreUpdateChangeOrderState($changeOrder, $activity, $comments, $emails) {
(continues on next page)

5.2. Objects 43

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/email/

powerEvents

(continued from previous page)

#Write event code here
}

UpdateChangeOrderState_Post:

Register-VaultEvent -EventName UpdateChangeOrderState_Post -Action
→˓'PostUpdateChangeOrderState'

function PostUpdateChangeOrderState($changeOrder, $activity, $comments, $emails,
→˓$successful) {

#Write event code here
}

AddChangeOrder

EventNames:

• AddChangeOrder_Restrictions

• AddChangeOrder_Pre

• AddChangeOrder_Post

Parameters

Type NameDescription
Change-
Order

change-
Order

The changeOrder which should get / is added.Restrictions and Pre: In Restrictions and Pre
you have the all the properties available on the object like _NewNumber, _NewTitle(Item,CO),
_NewDescription(Item,CO), _NewApproveDeadline and NewRouting.Post:In POST you have
the full powerVaultChangeOrder object, because at this point the Change Order exists.

File[] files The Files to be tracked by the Change Order.
Item[] items The Items to be tracked by the Change Order.User Defined Link properties are added and removed

directly on the items.
File[] at-

tach-
ments

Files to be attached to the Change Order.

Com-
ment[]

com-
ments

Multiple comments for the ChangeOrder including there attached files.

Email[]emailsMultiple emails to send out upon completion.
bool suc-

cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

AddChangeOrder event is raised when clicking in Vault Client on New Change Order. . . -> Save.
Afterwards it fires EditChangeOrder.
No CommitChangeOrder is called.

The argument files contains only the files that are directly linked to the ChangeOrder, and not the primary-links of the
linked Items!

44 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/email/

powerEvents

The argument comments contains the newly added comments.
A negative Id value is returned in Pre events and even the values for all other properties except Subject (CO), Message
and Attachments can only be retrieved in in Post events.

Examples:
AddChangeOrder_Restrictions:

Register-VaultEvent -EventName AddChangeOrder_Restrictions -Action
→˓'RestrictAddChangeOrder'

function RestrictAddChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$emails) {

#Write event code here
}

AddChangeOrder_Pre:

Register-VaultEvent -EventName AddChangeOrder_Pre -Action 'PreAddChangeOrder'

function PreAddChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$emails) {

#Write event code here
}

AddChangeOrder_Post:

Register-VaultEvent -EventName AddChangeOrder_Post -Action 'PostAddChangeOrder'

function PostAddChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$emails, $successful) {

#Write event code here
}

EditChangeOrder

EventNames:

• EditChangeOrder_Restrictions

• EditChangeOrder_Pre

• EditChangeOrder_Post

Parameters

Type Name Description
Change-
Order

change-
Order

The Change Order which should get / is in edit mode.

bool successful Post:The information whether the Web Service call was successful or not is only avail-
able in Post events.

Unexpected Behaviour

5.2. Objects 45

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/

powerEvents

EditChangeOrder event is raised when selecting a Change Order within the Vault Client and cliching on Edit.

Examples:
EditChangeOrder_Restrictions:

Register-VaultEvent -EventName EditChangeOrder_Restrictions -Action
→˓'RestrictEditChangeOrder'

function RestrictEditChangeOrder($changeOrder) {
#Write event code here

}

EditChangeOrder_Pre:

Register-VaultEvent -EventName EditChangeOrder_Pre -Action 'PreEditChangeOrder'

function PreEditChangeOrder($changeOrder) {
#Write event code here

}

EditChangeOrder_Post:

Register-VaultEvent -EventName EditChangeOrder_Post -Action 'PostEditChangeOrder'

function PostEditChangeOrder($changeOrder, $successful) {
#Write event code here

}

CommitChangeOrder

EventNames:

• CommitChangeOrder_Restrictions

• CommitChangeOrder_Pre

• CommitChangeOrder_Post

Parameters

46 Chapter 5. Code Reference

powerEvents

Type NameDescription
Change-
Order

change-
Order

The changeOrder which should get / is commited.Restrictions and Pre: In Restrictions and
Pre you have the future data set on this object like _NewNumber, _NewTitle(Item,CO),
_NewDescription(Item,CO), _NewApproveDeadline and NewRouting.Post:In POST
you have the previous properties available through _OldNumber, _OldTitle(Item,CO),
_OldDescription(Item,CO), _OldApproveDeadline and OldRouting.

File[] files The Files to be tracked by the Change Order.
Item[] items The Items to be tracked by the Change Order.User Defined Link properties are added and removed

directly on the items.
File[] at-

tach-
ments

Files to be attached to the Change Order.

Com-
ment[]

com-
ments

Multiple comments for the ChangeOrder including there attached files.

User[] routin-
gUsers

All the users with the associated routing roles for this Change Order.

Email[]emailsMultiple emails to send out upon completion.
bool suc-

cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

CommitChangeOrder event is raised when clicking in the Change Order dialog on Save. Afterwards it fires Ed-
itChangeOrder.

The argument files contains only the files that are directly linked to the ChangeOrder, and not the primary-links of the
linked Items!

The argument emails only contains the emails of the current commit, and not the once added before!

The argument comments contains the current comments and the newly added comments.
A negative Id value is returned in Pre events and even the values for all other properties except Subject (CO), Message
and Attachments can only be retrieved in in Post events.

Examples:
CommitChangeOrder_Restrictions:

Register-VaultEvent -EventName CommitChangeOrder_Restrictions -Action
→˓'RestrictCommitChangeOrder'

function RestrictCommitChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓ $routingUsers, $emails) {

#Write event code here
}

CommitChangeOrder_Pre:

Register-VaultEvent -EventName CommitChangeOrder_Pre -Action 'PreCommitChangeOrder'

function PreCommitChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$routingUsers, $emails) {

(continues on next page)

5.2. Objects 47

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/user/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/email/

powerEvents

(continued from previous page)

#Write event code here
}

CommitChangeOrder_Post:

Register-VaultEvent -EventName CommitChangeOrder_Post -Action 'PostCommitChangeOrder'

function PostCommitChangeOrder($changeOrder, $files, $items, $attachments, $comments,
→˓$routingUsers, $emails, $successful) {

#Write event code here
}

DeleteChangeOrders

EventNames:

• DeleteChangeOrders_Restrictions

• DeleteChangeOrders_Pre

• DeleteChangeOrders_Post

Parameters

Type Name Description
Change-
Order[]

changeOrders (deleted-
ChangeOrders in POST)

The changeOrders which should get / are deleted.

bool successful Post:The information whether the Web Service call was successful
or not is only available in Post events.

Examples:
DeleteChangeOrders_Restrictions:

Register-VaultEvent -EventName DeleteChangeOrders_Restrictions -Action
→˓'RestrictDeleteChangeOrders'

function RestrictDeleteChangeOrders($changeOrders) {
#Write event code here

}

DeleteChangeOrders_Pre:

Register-VaultEvent -EventName DeleteChangeOrders_Pre -Action 'PreDeleteChangeOrders'

function PreDeleteChangeOrders($changeOrders) {
#Write event code here

}

DeleteChangeOrders_Post:

Register-VaultEvent -EventName DeleteChangeOrders_Post -Action 'PostDeleteChangeOrders'

(continues on next page)

48 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/

powerEvents

(continued from previous page)

function PostDeleteChangeOrders($deletedChangeOrders, $successful) {
#Write event code here

}

UpdateChangeOrderState

EventNames:

• UpdateChangeOrderState_Restrictions

• UpdateChangeOrderState_Pre

• UpdateChangeOrderState_Post

Parameters

Type Name Description
Change-
Order

change-
Order

The updated / updating Change Order for a LifeCycle.Restrictions and Pre: In Restrictions and Pre
you have the future data set on this object like _NewStateEntered.Post:In POST you can retrieve
the previous information by using the properties _OldState and _OldStateEntered.

string ac-
tiv-
ity

The activity being completed.

Com-
ment[]

com-
ments

Multiple comments for the ChangeOrder including there attached files.

Email[]emails Multiple emails to send out upon completion.
bool suc-

cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

UpdateChangeOrderState event is raised when clicking on Submit/Approve, in general when the State/Activity is
changed.

When fired by Vault Client then the property _NewStateEntered from the argument changeOrder is the StateEntered
of the current ChangeOrder!

Each comment in the argument comments provide negative Ids and only Subject (CO), Message and Attachments
values can be retrieved. All other data is unavailable, even in Post events.

Examples:
UpdateChangeOrderState_Restrictions:

Register-VaultEvent -EventName UpdateChangeOrderState_Restrictions -Action
→˓'RestrictUpdateChangeOrderState'

function RestrictUpdateChangeOrderState($changeOrder, $activity, $comments, $emails) {
#Write event code here

}

UpdateChangeOrderState_Pre:

5.2. Objects 49

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/change_order/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/comment/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/email/

powerEvents

Register-VaultEvent -EventName UpdateChangeOrderState_Pre -Action
→˓'PreUpdateChangeOrderState'

function PreUpdateChangeOrderState($changeOrder, $activity, $comments, $emails) {
#Write event code here

}

UpdateChangeOrderState_Post:

Register-VaultEvent -EventName UpdateChangeOrderState_Post -Action
→˓'PostUpdateChangeOrderState'

function PostUpdateChangeOrderState($changeOrder, $activity, $comments, $emails,
→˓$successful) {

#Write event code here
}

Custom Entity Events

UpdateCustomEntityStates

EventNames:

• UpdateCustomEntityStates_Restrictions

• UpdateCustomEntityStates_Pre

• UpdateCustomEntityStates_Post

Parameters

Type Name Description
Cus-
to-
mOb-
ject[]

cus-
to-
mOb-
jects

The updated / updating customObjects for a LifeCycle.Restrictions and Pre: In Restrictions and Pre
you could get the future changes by the special properties _NewState, _NewLifeCycleDefinition
and _NewComment.Post:In Post you could get the old information by the special properties
_OldState, _OldLifeCycleDefinition and _OldComment

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

For the UpdateCustomEntityStates_Post event the property _OldComment will always be empty because the
VaultAPI currently does not support Comments on CustomObjects (it is reserved for future use).

Examples:
UpdateCustomEntityStates_Restrictions:

Register-VaultEvent -EventName UpdateCustomEntityStates_Restrictions -Action
→˓'RestrictUpdateCustomEntityStates'

(continues on next page)

50 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/

powerEvents

(continued from previous page)

function RestrictUpdateCustomEntityStates($customObjects) {
#Write event code here

}

UpdateCustomEntityStates_Pre:

Register-VaultEvent -EventName UpdateCustomEntityStates_Pre -Action
→˓'PreUpdateCustomEntityStates'

function PreUpdateCustomEntityStates($customObjects) {
#Write event code here

}

UpdateCustomEntityStates_Post:

Register-VaultEvent -EventName UpdateCustomEntityStates_Post -Action
→˓'PostUpdateCustomEntityStates'

function PostUpdateCustomEntityStates($customObjects, $successful) {
#Write event code here
}

UpdateCustomEntityStates

EventNames:

• UpdateCustomEntityStates_Restrictions

• UpdateCustomEntityStates_Pre

• UpdateCustomEntityStates_Post

Parameters

Type Name Description
Cus-
to-
mOb-
ject[]

cus-
to-
mOb-
jects

The updated / updating customObjects for a LifeCycle.Restrictions and Pre: In Restrictions and Pre
you could get the future changes by the special properties _NewState, _NewLifeCycleDefinition
and _NewComment.Post:In Post you could get the old information by the special properties
_OldState, _OldLifeCycleDefinition and _OldComment

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

For the UpdateCustomEntityStates_Post event the property _OldComment will always be empty because the
VaultAPI currently does not support Comments on CustomObjects (it is reserved for future use).

Examples:
UpdateCustomEntityStates_Restrictions:

5.2. Objects 51

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/custom_object/

powerEvents

Register-VaultEvent -EventName UpdateCustomEntityStates_Restrictions -Action
→˓'RestrictUpdateCustomEntityStates'

function RestrictUpdateCustomEntityStates($customObjects) {
#Write event code here

}

UpdateCustomEntityStates_Pre:

Register-VaultEvent -EventName UpdateCustomEntityStates_Pre -Action
→˓'PreUpdateCustomEntityStates'

function PreUpdateCustomEntityStates($customObjects) {
#Write event code here

}

UpdateCustomEntityStates_Post:

Register-VaultEvent -EventName UpdateCustomEntityStates_Post -Action
→˓'PostUpdateCustomEntityStates'

function PostUpdateCustomEntityStates($customObjects, $successful) {
#Write event code here
}

File Events

AddFile

EventNames:

• AddFile_Restrictions

• AddFile_Pre

• AddFile_Post

Parameters

52 Chapter 5. Code Reference

powerEvents

Type Name Description
File file The file which is / was added.Restrictions and Pre: In Restrictions and Pre you have only very lim-

ited data set on this object like _NewName, _NewComment, _NewModDate, _NewClassification
and _NewHidden, because the file does not exist yet.Post:In Post it is a powerVaultFile object, be-
cause here the file exists.

Folder par-
ent-
Folder

The folder where the new file is located.

File[] de-
pen-
den-
cies

The file dependencies what this new file has.

File[] at-
tach-
ments

The attached files what this new file has.

File-
Bom-
Row[]

file-
Bom

The Bill of Materials of the newly checked-in file.For Inventor files with multiple Model States only
the BOM data of the Master model state is available.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
AddFile_Restrictions:

Register-VaultEvent -EventName AddFile_Restrictions -Action 'RestrictAddFile'

function RestrictAddFile($file, $parentFolder, $dependencies, $attachments, $fileBom) {
#Write event code here

}

AddFile_Pre:

Register-VaultEvent -EventName AddFile_Pre -Action 'PreAddFile'

function PreAddFile($file, $parentFolder, $dependencies, $attachments, $fileBom) {
#Write event code here

}

AddFile_Post:

Register-VaultEvent -EventName AddFile_Post -Action 'PostAddFile'

function PostAddFile($file, $parentFolder, $dependencies, $attachments, $fileBom,
→˓$successful) {

#Write event code here
}

5.2. Objects 53

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://knowledge.autodesk.com/support/inventor/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Inventor-Help/files/GUID-8E771DBE-1107-4AE8-BE3E-AF3A7977F3C6-htm.html

powerEvents

CheckinFile

EventNames:

• CheckinFile_Restrictions

• CheckinFile_Pre

• CheckinFile_Post

Parameters

Type NameDescription
File file The file which is / was checked in.Restrictions and Pre: In Restrictions and Pre you have the fu-

ture data set on this object like _NewName, _NewComment, _NewModDate, _NewClassification,
_NewCheckedOut and _NewHidden.Post:In POST you can retrieve the information from previous
events by using the properties _OldName, _OldComment, _OldModDate, _OldClassification,
_OldCheckedOut and _OldHidden.

File[] de-
pen-
den-
cies

The file dependencies what this new checked-in file has.

File[] at-
tach-
ments

The attachments what this new checked-in file has.

File-
Bom-
Row[]

file-
Bom

The Bill of Materials of the checked-in file.For Inventor files with multiple Model States only the BOM
data of the Master model state is available.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

CheckinFile event is not raised when a file is added to Vault for the first time. Instead the AddFile event is raised.

Examples:
CheckinFile_Restrictions:

Register-VaultEvent -EventName CheckinFile_Restrictions -Action 'RestrictCheckinFile'
function RestrictCheckinFile($file, $dependencies, $attachments, $fileBom) {

#Write event code here
}

CheckinFile_Pre:

Register-VaultEvent -EventName CheckinFile_Pre -Action 'PreCheckinFile'
function PreCheckinFile($file, $dependencies, $attachments, $fileBom) {

#Write event code here
}

CheckinFile_Post:

54 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://knowledge.autodesk.com/support/inventor/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Inventor-Help/files/GUID-8E771DBE-1107-4AE8-BE3E-AF3A7977F3C6-htm.html

powerEvents

Register-VaultEvent -EventName CheckinFile_Post -Action 'PostCheckinFile'
function PostCheckinFile($file, $dependencies, $attachments, $fileBom, $successful) {

#Write event code here
}

CheckoutFile

EventNames:

• CheckoutFile_Restrictions

• CheckoutFile_Pre

• CheckoutFile_Post

Parameters

Type NameDescription
File file The file which should get / is checked=out.Restrictions and Pre: In Restrictions and Pre you have

the future data set on this object like _NewComment and _NewCheckoutMachine.Post:In POST
you can retrieve the information from the previous events by using the properties _OldComment and
_OldCheckoutMachine.

string lo-
cal-
Path

The local path where the file should / is checked=out

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
CheckoutFile_Restrictions:

Register-VaultEvent -EventName CheckoutFile_Restrictions -Action 'RestrictCheckoutFile'
function RestrictCheckoutFile($file, $localPath) {

#Write event code here
}

CheckoutFile_Pre:

Register-VaultEvent -EventName CheckoutFile_Pre -Action 'PreCheckoutFile'
function PreCheckoutFile($file, $localPath) {

#Write event code here
}

CheckoutFile_Post:

Register-VaultEvent -EventName CheckoutFile_Post -Action 'PostCheckoutFile'
function PostCheckoutFile($file, $localPath, $successful) {

#Write event code here
}

5.2. Objects 55

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/

powerEvents

DeleteFiles

EventNames:

• DeleteFiles_Restrictions

• DeleteFiles_Pre

• DeleteFiles_Post

Parameters

Type Name Description
File[] files (deletedFiles in

POST)
The files which should be deleted or are already deleted.

bool successful Post:The information whether the Web Service call was successful or not is only
available in Post events.

Examples:
DeleteFiles_Restrictions:

Register-VaultEvent -EventName DeleteFiles_Restrictions -Action 'RestrictDeleteFiles'

function RestrictDeleteFiles($files) {
#Write event code here

}

DeleteFiles_Pre:

Register-VaultEvent -EventName DeleteFiles_Pre -Action 'PreDeleteFiles'

function PreDeleteFiles($files) {
#Write event code here

}

DeleteFiles_Post:

Register-VaultEvent -EventName DeleteFiles_Post -Action 'PostDeleteFiles'

function PostDeleteFiles($deletedFiles, $successful) {
#Write event code here

}

DownloadFiles

EventNames:

• DownloadFiles_Restrictions

• DownloadFiles_Pre

• DownloadFiles_Post

Parameters

56 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/

powerEvents

Type Name Description
File[] files The files which should get / are downloaded.
bool success-

ful
Post:The information whether the Web Service call was successful or not is only available in
Post events.

Examples:
DownloadFiles_Restrictions:

Register-VaultEvent -EventName DownloadFiles_Restrictions -Action 'RestrictDownloadFiles'

function RestrictDownloadFiles($files) {
#Write event code here

}

DownloadFiles_Pre:

Register-VaultEvent -EventName DownloadFiles_Pre -Action 'PreDownloadFiles'

function PreDownloadFiles($files) {
#Write event code here

}

DownloadFiles_Post:

Register-VaultEvent -EventName DownloadFiles_Post -Action 'PostDownloadFiles'

function PostDownloadFiles($files, $successful) {
#Write event code here

}

MoveFile

EventNames:

• MoveFile_Restrictions

• MoveFile_Pre

• MoveFile_Post

Parameters

Type Name Description
File file The file which should get / are moved.Restrictions and Pre: In Restrictions and Pre you could get

the new path by the property _NewFullPath.Post:In POST you you could get the old path by the
property _OldFullPath.

Folderpar-
ent-
Folder

The parent folder where the file should get / is moved.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

5.2. Objects 57

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

Examples:
MoveFile_Restrictions:

Register-VaultEvent -EventName MoveFile_Restrictions -Action 'RestrictMoveFile'

function RestrictMoveFile($file, $parentFolder) {
#Write event code here

}

MoveFile_Pre:

Register-VaultEvent -EventName MoveFile_Pre -Action 'PreMoveFile'

function PreMoveFile($file, $parentFolder) {
#Write event code here

}

MoveFile_Post:

Register-VaultEvent -EventName MoveFile_Post -Action 'PostMoveFile'

function PostMoveFile($file, $parentFolder, $successful) {
#Write event code here

}

UpdateFileStates

EventNames:

• UpdateFileStates_Restrictions

• UpdateFileStates_Pre

• UpdateFileStates_Post

Parameters

Type NameDescription
File[] files The updated / updating files for a LifeCycle.Restrictions and Pre: In Restrictions and Pre

you have the future data set on this object like _NewComment, _NewLifeCycleDefinition and
_NewState.Post:In POST you can retrieve the information from previous events by using the proper-
ties _OldComment, _OldState and _OldLifeCycleDefinition.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
UpdateFileStates_Restrictions:

Register-VaultEvent -EventName UpdateFileStates_Restrictions -Action
→˓'RestrictUpdateFileStates'

function RestrictUpdateFileStates($files) {
(continues on next page)

58 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/

powerEvents

(continued from previous page)

#Write event code here
}

UpdateFileStates_Pre:

Register-VaultEvent -EventName UpdateFileStates_Pre -Action 'PreUpdateFileStates'

function PreUpdateFileStates($files) {
#Write event code here

}

UpdateFileStates_Post:

Register-VaultEvent -EventName UpdateFileStates_Post -Action 'PostUpdateFileStates'

function PostUpdateFileStates($files, $successful) {
#Write event code here

}

AddFile

EventNames:

• AddFile_Restrictions

• AddFile_Pre

• AddFile_Post

Parameters

Type Name Description
File file The file which is / was added.Restrictions and Pre: In Restrictions and Pre you have only very lim-

ited data set on this object like _NewName, _NewComment, _NewModDate, _NewClassification
and _NewHidden, because the file does not exist yet.Post:In Post it is a powerVaultFile object, be-
cause here the file exists.

Folder par-
ent-
Folder

The folder where the new file is located.

File[] de-
pen-
den-
cies

The file dependencies what this new file has.

File[] at-
tach-
ments

The attached files what this new file has.

File-
Bom-
Row[]

file-
Bom

The Bill of Materials of the newly checked-in file.For Inventor files with multiple Model States only
the BOM data of the Master model state is available.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

5.2. Objects 59

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://knowledge.autodesk.com/support/inventor/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Inventor-Help/files/GUID-8E771DBE-1107-4AE8-BE3E-AF3A7977F3C6-htm.html

powerEvents

Examples:
AddFile_Restrictions:

Register-VaultEvent -EventName AddFile_Restrictions -Action 'RestrictAddFile'

function RestrictAddFile($file, $parentFolder, $dependencies, $attachments, $fileBom) {
#Write event code here

}

AddFile_Pre:

Register-VaultEvent -EventName AddFile_Pre -Action 'PreAddFile'

function PreAddFile($file, $parentFolder, $dependencies, $attachments, $fileBom) {
#Write event code here

}

AddFile_Post:

Register-VaultEvent -EventName AddFile_Post -Action 'PostAddFile'

function PostAddFile($file, $parentFolder, $dependencies, $attachments, $fileBom,
→˓$successful) {

#Write event code here
}

CheckinFile

EventNames:

• CheckinFile_Restrictions

• CheckinFile_Pre

• CheckinFile_Post

Parameters

60 Chapter 5. Code Reference

powerEvents

Type NameDescription
File file The file which is / was checked in.Restrictions and Pre: In Restrictions and Pre you have the fu-

ture data set on this object like _NewName, _NewComment, _NewModDate, _NewClassification,
_NewCheckedOut and _NewHidden.Post:In POST you can retrieve the information from previous
events by using the properties _OldName, _OldComment, _OldModDate, _OldClassification,
_OldCheckedOut and _OldHidden.

File[] de-
pen-
den-
cies

The file dependencies what this new checked-in file has.

File[] at-
tach-
ments

The attachments what this new checked-in file has.

File-
Bom-
Row[]

file-
Bom

The Bill of Materials of the checked-in file.For Inventor files with multiple Model States only the BOM
data of the Master model state is available.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

CheckinFile event is not raised when a file is added to Vault for the first time. Instead the AddFile event is raised.

Examples:
CheckinFile_Restrictions:

Register-VaultEvent -EventName CheckinFile_Restrictions -Action 'RestrictCheckinFile'
function RestrictCheckinFile($file, $dependencies, $attachments, $fileBom) {

#Write event code here
}

CheckinFile_Pre:

Register-VaultEvent -EventName CheckinFile_Pre -Action 'PreCheckinFile'
function PreCheckinFile($file, $dependencies, $attachments, $fileBom) {

#Write event code here
}

CheckinFile_Post:

Register-VaultEvent -EventName CheckinFile_Post -Action 'PostCheckinFile'
function PostCheckinFile($file, $dependencies, $attachments, $fileBom, $successful) {

#Write event code here
}

5.2. Objects 61

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/filebomrow/
https://knowledge.autodesk.com/support/inventor/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Inventor-Help/files/GUID-8E771DBE-1107-4AE8-BE3E-AF3A7977F3C6-htm.html

powerEvents

CheckoutFile

EventNames:

• CheckoutFile_Restrictions

• CheckoutFile_Pre

• CheckoutFile_Post

Parameters

Type NameDescription
File file The file which should get / is checked=out.Restrictions and Pre: In Restrictions and Pre you have

the future data set on this object like _NewComment and _NewCheckoutMachine.Post:In POST
you can retrieve the information from the previous events by using the properties _OldComment and
_OldCheckoutMachine.

string lo-
cal-
Path

The local path where the file should / is checked=out

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
CheckoutFile_Restrictions:

Register-VaultEvent -EventName CheckoutFile_Restrictions -Action 'RestrictCheckoutFile'
function RestrictCheckoutFile($file, $localPath) {

#Write event code here
}

CheckoutFile_Pre:

Register-VaultEvent -EventName CheckoutFile_Pre -Action 'PreCheckoutFile'
function PreCheckoutFile($file, $localPath) {

#Write event code here
}

CheckoutFile_Post:

Register-VaultEvent -EventName CheckoutFile_Post -Action 'PostCheckoutFile'
function PostCheckoutFile($file, $localPath, $successful) {

#Write event code here
}

62 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/

powerEvents

DeleteFiles

EventNames:

• DeleteFiles_Restrictions

• DeleteFiles_Pre

• DeleteFiles_Post

Parameters

Type Name Description
File[] files (deletedFiles in

POST)
The files which should be deleted or are already deleted.

bool successful Post:The information whether the Web Service call was successful or not is only
available in Post events.

Examples:
DeleteFiles_Restrictions:

Register-VaultEvent -EventName DeleteFiles_Restrictions -Action 'RestrictDeleteFiles'

function RestrictDeleteFiles($files) {
#Write event code here

}

DeleteFiles_Pre:

Register-VaultEvent -EventName DeleteFiles_Pre -Action 'PreDeleteFiles'

function PreDeleteFiles($files) {
#Write event code here

}

DeleteFiles_Post:

Register-VaultEvent -EventName DeleteFiles_Post -Action 'PostDeleteFiles'

function PostDeleteFiles($deletedFiles, $successful) {
#Write event code here

}

DownloadFiles

EventNames:

• DownloadFiles_Restrictions

• DownloadFiles_Pre

• DownloadFiles_Post

Parameters

5.2. Objects 63

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/

powerEvents

Type Name Description
File[] files The files which should get / are downloaded.
bool success-

ful
Post:The information whether the Web Service call was successful or not is only available in
Post events.

Examples:
DownloadFiles_Restrictions:

Register-VaultEvent -EventName DownloadFiles_Restrictions -Action 'RestrictDownloadFiles'

function RestrictDownloadFiles($files) {
#Write event code here

}

DownloadFiles_Pre:

Register-VaultEvent -EventName DownloadFiles_Pre -Action 'PreDownloadFiles'

function PreDownloadFiles($files) {
#Write event code here

}

DownloadFiles_Post:

Register-VaultEvent -EventName DownloadFiles_Post -Action 'PostDownloadFiles'

function PostDownloadFiles($files, $successful) {
#Write event code here

}

MoveFile

EventNames:

• MoveFile_Restrictions

• MoveFile_Pre

• MoveFile_Post

Parameters

Type Name Description
File file The file which should get / are moved.Restrictions and Pre: In Restrictions and Pre you could get

the new path by the property _NewFullPath.Post:In POST you you could get the old path by the
property _OldFullPath.

Folderpar-
ent-
Folder

The parent folder where the file should get / is moved.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

64 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

Examples:
MoveFile_Restrictions:

Register-VaultEvent -EventName MoveFile_Restrictions -Action 'RestrictMoveFile'

function RestrictMoveFile($file, $parentFolder) {
#Write event code here

}

MoveFile_Pre:

Register-VaultEvent -EventName MoveFile_Pre -Action 'PreMoveFile'

function PreMoveFile($file, $parentFolder) {
#Write event code here

}

MoveFile_Post:

Register-VaultEvent -EventName MoveFile_Post -Action 'PostMoveFile'

function PostMoveFile($file, $parentFolder, $successful) {
#Write event code here

}

UpdateFileStates

EventNames:

• UpdateFileStates_Restrictions

• UpdateFileStates_Pre

• UpdateFileStates_Post

Parameters

Type NameDescription
File[] files The updated / updating files for a LifeCycle.Restrictions and Pre: In Restrictions and Pre

you have the future data set on this object like _NewComment, _NewLifeCycleDefinition and
_NewState.Post:In POST you can retrieve the information from previous events by using the proper-
ties _OldComment, _OldState and _OldLifeCycleDefinition.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
UpdateFileStates_Restrictions:

Register-VaultEvent -EventName UpdateFileStates_Restrictions -Action
→˓'RestrictUpdateFileStates'

function RestrictUpdateFileStates($files) {
(continues on next page)

5.2. Objects 65

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/

powerEvents

(continued from previous page)

#Write event code here
}

UpdateFileStates_Pre:

Register-VaultEvent -EventName UpdateFileStates_Pre -Action 'PreUpdateFileStates'

function PreUpdateFileStates($files) {
#Write event code here

}

UpdateFileStates_Post:

Register-VaultEvent -EventName UpdateFileStates_Post -Action 'PostUpdateFileStates'

function PostUpdateFileStates($files, $successful) {
#Write event code here

}

Folder Events

AddFolder

EventNames:

• AddFolder_Restrictions

• AddFolder_Pre

• AddFolder_Post

Parameters

Type Name Description
Folder folder The folder which should get / is added.Restrictions and Pre: In Restrictions and Pre you have the

very limited data set on this object like _NewName and _NewLibrary.Post:In POST its an usual
powerVaultFolder object, because at this point the folder exists.

Folderpar-
ent-
Folder

The parent folder where the new folder will be / is added.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
AddFolder_Restrictions:

Register-VaultEvent -EventName AddFolder_Restrictions -Action 'RestrictAddFolder'

function RestrictAddFolder($folder, $parentFolder) {
#Write event code here

}

66 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

AddFolder_Pre:

Register-VaultEvent -EventName AddFolder_Pre -Action 'PreAddFolder'

function PreAddFolder($folder, $parentFolder) {
#Write event code here

}

AddFolder_Post:

Register-VaultEvent -EventName AddFolder_Post -Action 'PostAddFolder'

function PostAddFolder($folder, $parentFolder, $successful) {
#Write event code here

}

DeleteFolder

EventNames:

• DeleteFolder_Restrictions

• DeleteFolder_Pre

• DeleteFolder_Post

Parameters

Type Name Description
Folder folder (deletedFolder in

POST)
The folder which should get / is deleted.

bool successful Post:The information whether the Web Service call was successful or not is only
available in Post events.

Examples:
DeleteFolder_Restrictions:

Register-VaultEvent -EventName DeleteFolder_Restrictions -Action 'RestrictDeleteFolder'

function RestrictDeleteFolder($folder) {
#Write event code here

}

DeleteFolder_Pre:

Register-VaultEvent -EventName DeleteFolder_Pre -Action 'PreDeleteFolder'

function PreDeleteFolder($folder) {
#Write event code here

}

DeleteFolder_Post:

5.2. Objects 67

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

Register-VaultEvent -EventName DeleteFolder_Post -Action 'PostDeleteFolder'

function PostDeleteFolder($deletedFolder, $successful) {
#Write event code here

}

MoveFolder

EventNames:

• MoveFolder_Restrictions

• MoveFolder_Pre

• MoveFolder_Post

Parameters

Type Name Description
Folder folder The folder which should get / is moved.Restrictions and Pre: In Restrictions and Pre you have

the future data set on this object like _NewFullPath.Post:In POST you can retrieve the previous
information by using the properties _OldFullPath.

Folderpar-
ent-
Folder

The new parent folder where the folder should / is moved

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
MoveFolder_Restrictions:

Register-VaultEvent -EventName MoveFolder_Restrictions -Action 'RestrictMoveFolder'

function RestrictMoveFolder($folder, $parentFolder) {
#Write event code here

}

MoveFolder_Pre:

Register-VaultEvent -EventName MoveFolder_Pre -Action 'PreMoveFolder'

function PreMoveFolder($folder, $parentFolder) {
#Write event code here

}

MoveFolder_Post:

Register-VaultEvent -EventName MoveFolder_Post -Action 'PostMoveFolder'

function PostMoveFolder($folder, $parentFolder, $successful) {
#Write event code here

}

68 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

AddFolder

EventNames:

• AddFolder_Restrictions

• AddFolder_Pre

• AddFolder_Post

Parameters

Type Name Description
Folder folder The folder which should get / is added.Restrictions and Pre: In Restrictions and Pre you have the

very limited data set on this object like _NewName and _NewLibrary.Post:In POST its an usual
powerVaultFolder object, because at this point the folder exists.

Folderpar-
ent-
Folder

The parent folder where the new folder will be / is added.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
AddFolder_Restrictions:

Register-VaultEvent -EventName AddFolder_Restrictions -Action 'RestrictAddFolder'

function RestrictAddFolder($folder, $parentFolder) {
#Write event code here

}

AddFolder_Pre:

Register-VaultEvent -EventName AddFolder_Pre -Action 'PreAddFolder'

function PreAddFolder($folder, $parentFolder) {
#Write event code here

}

AddFolder_Post:

Register-VaultEvent -EventName AddFolder_Post -Action 'PostAddFolder'

function PostAddFolder($folder, $parentFolder, $successful) {
#Write event code here

}

5.2. Objects 69

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

MoveFolder

EventNames:

• MoveFolder_Restrictions

• MoveFolder_Pre

• MoveFolder_Post

Parameters

Type Name Description
Folder folder The folder which should get / is moved.Restrictions and Pre: In Restrictions and Pre you have

the future data set on this object like _NewFullPath.Post:In POST you can retrieve the previous
information by using the properties _OldFullPath.

Folderpar-
ent-
Folder

The new parent folder where the folder should / is moved

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
MoveFolder_Restrictions:

Register-VaultEvent -EventName MoveFolder_Restrictions -Action 'RestrictMoveFolder'

function RestrictMoveFolder($folder, $parentFolder) {
#Write event code here

}

MoveFolder_Pre:

Register-VaultEvent -EventName MoveFolder_Pre -Action 'PreMoveFolder'

function PreMoveFolder($folder, $parentFolder) {
#Write event code here

}

MoveFolder_Post:

Register-VaultEvent -EventName MoveFolder_Post -Action 'PostMoveFolder'

function PostMoveFolder($folder, $parentFolder, $successful) {
#Write event code here

}

70 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

DeleteFolder

EventNames:

• DeleteFolder_Restrictions

• DeleteFolder_Pre

• DeleteFolder_Post

Parameters

Type Name Description
Folder folder (deletedFolder in

POST)
The folder which should get / is deleted.

bool successful Post:The information whether the Web Service call was successful or not is only
available in Post events.

Examples:
DeleteFolder_Restrictions:

Register-VaultEvent -EventName DeleteFolder_Restrictions -Action 'RestrictDeleteFolder'

function RestrictDeleteFolder($folder) {
#Write event code here

}

DeleteFolder_Pre:

Register-VaultEvent -EventName DeleteFolder_Pre -Action 'PreDeleteFolder'

function PreDeleteFolder($folder) {
#Write event code here

}

DeleteFolder_Post:

Register-VaultEvent -EventName DeleteFolder_Post -Action 'PostDeleteFolder'

function PostDeleteFolder($deletedFolder, $successful) {
#Write event code here

}

Item Events

AddItem

EventNames:

• AddItem_Restrictions

• AddItem_Pre

• AddItem_Post

5.2. Objects 71

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/folder/

powerEvents

Parameters

Type NameDescription
Item item The item which should get / is added.Restrictions and Pre: In Restrictions and Pre you have very

limited data, because the item does not exist so far.Only the property _NewCategoryName is set as
long as a valid category Id was passed.Post:In POST you have a full powerVaultItem object available,
because at this point the item exists.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

AddItem event is raised when clicking in Vault Client on New Item. . . -> Selecting Category -> Ok. Therefore you
have only the data about the selected Category available and seriously not more.

Examples:
AddItem_Restrictions:

Register-VaultEvent -EventName AddItem_Restrictions -Action 'RestrictAddItem'

function RestrictAddItem($item) {
#Write event code here

}

AddItem_Pre:

Register-VaultEvent -EventName AddItem_Pre -Action 'PreAddItem'

function PreAddItem($item) {
#Write event code here

}

AddItem_Post:

Register-VaultEvent -EventName AddItem_Post -Action 'PostAddItem'

function PostAddItem($item, $successful) {
#Write event code here

}

CommitItems

EventNames:

• CommitItems_Restrictions

• CommitItems_Pre

• CommitItems_Post

Parameters

72 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

Type NameDescription
Item[] items The items which should get / is comited.Restrictions and Pre: In Restrictions and Pre you have the

future data set on this object like _NewNumber, _NewTitle(Item,CO), _NewDescription(Item,
CO), _NewComment and _NewUnits.Post:In POST you can retrieve the previous information by using
the properties _OldNumber, _OldTitle(Item,CO), _OldDescription(Item,CO), _OldComment
and _OldUnits.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

CommitItems: is raised when clicking in the item dialog on Save or Save and Close.

When changing Item number via the Vault Client, the properties _Number, _NewNumber and _OldNumber have the
same value.
This happens because the API call ItemService.CommitItemNumbers already changes the number on the item that
is still in edit-mode.

When committing an Item which has a Comment, the properties _Comment and _OldComment will be empty because
the comment will be automatically cleared from the previous API call ItemService.EditItems.

Examples:
CommitItems_Restrictions:

Register-VaultEvent -EventName CommitItems_Restrictions -Action 'RestrictCommitItems'

function RestrictCommitItems($items) {
#Write event code here

}

CommitItems_Pre:

Register-VaultEvent -EventName CommitItems_Pre -Action 'PreCommitItems'

function PreCommitItems($items) {
#Write event code here

}

CommitItems_Post:

Register-VaultEvent -EventName CommitItems_Post -Action 'PostCommitItems'

function PostCommitItems($items, $successful) {
#Write event code here

}

5.2. Objects 73

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

DeleteItems

EventNames:

• DeleteItems_Restrictions

• DeleteItems_Pre

• DeleteItems_Post

Parameters

Type Name Description
Item[] items (deletedItems in

POST)
The items which should get / are deleted.

bool successful Post:The information whether the Web Service call was successful or not is only
available in Post events.

Examples:
DeleteItems_Restrictions:

Register-VaultEvent -EventName DeleteItems_Restrictions -Action 'RestrictDeleteItems'

function RestrictDeleteItems($items) {
#Write event code here

}

DeleteItems_Pre:

Register-VaultEvent -EventName DeleteItems_Pre -Action 'PreDeleteItems'

function PreDeleteItems($items) {
#Write event code here

}

DeleteItems_Post:

Register-VaultEvent -EventName DeleteItems_Post -Action 'PostDeleteItems'

function PostDeleteItems($deletedItems, $successful) {
#Write event code here

}

EditItems

EventNames:

• EditItems_Restrictions

• EditItems_Pre

• EditItems_Post

Parameters

74 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

Type Name Description
Item[] items The items which should get / are in edit mode.
bool success-

ful
Post:The information whether the Web Service call was successful or not is only available in
Post events.

Unexpected Behaviour

The EditItems event is raised when:

• clicking on Open -> Edit or directly “Update “for the item.

• clicking on Save (not save and close) in the dialog then first CommitItem is fired, and then EditItem

• activating in the the Bill of Materials Tab of the Item dialog a new item

Examples:
EditItems_Restrictions:

Register-VaultEvent -EventName EditItems_Restrictions -Action 'RestrictEditItems'

function RestrictEditItems($items) {
#Write event code here

}

EditItems_Pre:

Register-VaultEvent -EventName EditItems_Pre -Action 'PreEditItems'

function PreEditItems($items) {
#Write event code here

}

EditItems_Post:

Register-VaultEvent -EventName EditItems_Post -Action 'PostEditItems'

function PostEditItems($items, $successful) {
#Write event code here

}

PromoteItems

EventNames:

• PromoteItems_Restrictions

• PromoteItems_Pre

• PromoteItems_Post

Parameters

5.2. Objects 75

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

Type Name Description
File[] files The files which should get / are assigned to the items.
Item[] items The items which should get / are assigned to the files.
bool success-

ful
Post:The information whether the Web Service call was successful or not is only available in
Post events.

Unexpected Behaviour

PromoteItems event is raised when clicking “Assign / Update Item” on a file or “Update. . .” on a item and afterwards
EditItem event is fired

• When “Assign / Update Item” on a file is clicked wheter the item exists or not, you will only get data about the
files

• When “Update. . .” on an item is clicked, you will only get data about the items

• Changing item category does not fire any event.

Examples:
PromoteItems_Restrictions:

Register-VaultEvent -EventName PromoteItems_Restrictions -Action 'RestrictPromoteItems'

function RestrictPromoteItems($files, $items) {
#Write event code here

}

PromoteItems_Pre:

Register-VaultEvent -EventName PromoteItems_Pre -Action 'PrePromoteItems'

function PrePromoteItems($files, $items) {
#Write event code here

}

PromoteItems_Post:

Register-VaultEvent -EventName PromoteItems_Post -Action 'PostPromoteItems'

function PostPromoteItems($files, $items, $successful) {
#Write event code here

}

76 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

RollbackItemState

EventNames:

• RollbackItemState_Restrictions

• RollbackItemState_Pre

• RollbackItemState_Post

Parameters

Type NameDescription
Item item The item which should get / is reverted for a LifeCycle.Restrictions and Pre: In Re-

strictions and Pre you have the future data set on this object like _NewState and
_NewLifeCycleDefinition.Post:In POST you can retrieve the old information by the prop-
erties _OldState and _OldLifeCycleDefinition.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
RollbackItemState_Restrictions:

Register-VaultEvent -EventName RollbackItemState_Restrictions -Action
→˓'RestrictRollbackItemState'

function RestrictRollbackItemState($item) {
#Write event code here

}

RollbackItemState_Pre:

Register-VaultEvent -EventName RollbackItemState_Pre -Action 'PreRollbackItemState'

function PreRollbackItemState($item) {
#Write event code here

}

RollbackItemState_Post:

Register-VaultEvent -EventName RollbackItemState_Post -Action 'PostRollbackItemState'

function PostRollbackItemState($item, $successful) {
#Write event code here

}

5.2. Objects 77

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

UpdateItemStates

EventNames:

• UpdateItemStates_Restrictions

• UpdateItemStates_Pre

• UpdateItemStates_Post

Parameters

Type NameDescription
Item[] items The updated / updating items for a LifeCycle.Restrictions and Pre: In Restrictions and Pre

you have the future data set on this object like _NewComment, _NewLifeCycleDefinition
and _NewState.Post:In POST you can retrieve the previous information by using the properties
_OldComment, _OldLifeCycleDefinition and _OldState.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
UpdateItemStates_Restrictions:

Register-VaultEvent -EventName UpdateItemStates_Restrictions -Action
→˓'RestrictUpdateItemStates'

function RestrictUpdateItemStates($items) {
#Write event code here

}

UpdateItemStates_Pre:

Register-VaultEvent -EventName UpdateItemStates_Pre -Action 'PreUpdateItemStates'

function PreUpdateItemStates($items) {
#Write event code here

}

UpdateItemStates_Post:

Register-VaultEvent -EventName UpdateItemStates_Post -Action 'PostUpdateItemStates'

function PostUpdateItemStates($items, $successful) {
#Write event code here

}

78 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

AddItem

EventNames:

• AddItem_Restrictions

• AddItem_Pre

• AddItem_Post

Parameters

Type NameDescription
Item item The item which should get / is added.Restrictions and Pre: In Restrictions and Pre you have very

limited data, because the item does not exist so far.Only the property _NewCategoryName is set as
long as a valid category Id was passed.Post:In POST you have a full powerVaultItem object available,
because at this point the item exists.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

AddItem event is raised when clicking in Vault Client on New Item. . . -> Selecting Category -> Ok. Therefore you
have only the data about the selected Category available and seriously not more.

Examples:
AddItem_Restrictions:

Register-VaultEvent -EventName AddItem_Restrictions -Action 'RestrictAddItem'

function RestrictAddItem($item) {
#Write event code here

}

AddItem_Pre:

Register-VaultEvent -EventName AddItem_Pre -Action 'PreAddItem'

function PreAddItem($item) {
#Write event code here

}

AddItem_Post:

Register-VaultEvent -EventName AddItem_Post -Action 'PostAddItem'

function PostAddItem($item, $successful) {
#Write event code here

}

5.2. Objects 79

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

CommitItems

EventNames:

• CommitItems_Restrictions

• CommitItems_Pre

• CommitItems_Post

Parameters

Type NameDescription
Item[] items The items which should get / is comited.Restrictions and Pre: In Restrictions and Pre you have the

future data set on this object like _NewNumber, _NewTitle(Item,CO), _NewDescription(Item,
CO), _NewComment and _NewUnits.Post:In POST you can retrieve the previous information by using
the properties _OldNumber, _OldTitle(Item,CO), _OldDescription(Item,CO), _OldComment
and _OldUnits.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Unexpected Behaviour

CommitItems: is raised when clicking in the item dialog on Save or Save and Close.

When changing Item number via the Vault Client, the properties _Number, _NewNumber and _OldNumber have the
same value.
This happens because the API call ItemService.CommitItemNumbers already changes the number on the item that
is still in edit-mode.

When committing an Item which has a Comment, the properties _Comment and _OldComment will be empty because
the comment will be automatically cleared from the previous API call ItemService.EditItems.

Examples:
CommitItems_Restrictions:

Register-VaultEvent -EventName CommitItems_Restrictions -Action 'RestrictCommitItems'

function RestrictCommitItems($items) {
#Write event code here

}

CommitItems_Pre:

Register-VaultEvent -EventName CommitItems_Pre -Action 'PreCommitItems'

function PreCommitItems($items) {
#Write event code here

}

CommitItems_Post:

80 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

Register-VaultEvent -EventName CommitItems_Post -Action 'PostCommitItems'

function PostCommitItems($items, $successful) {
#Write event code here

}

DeleteItems

EventNames:

• DeleteItems_Restrictions

• DeleteItems_Pre

• DeleteItems_Post

Parameters

Type Name Description
Item[] items (deletedItems in

POST)
The items which should get / are deleted.

bool successful Post:The information whether the Web Service call was successful or not is only
available in Post events.

Examples:
DeleteItems_Restrictions:

Register-VaultEvent -EventName DeleteItems_Restrictions -Action 'RestrictDeleteItems'

function RestrictDeleteItems($items) {
#Write event code here

}

DeleteItems_Pre:

Register-VaultEvent -EventName DeleteItems_Pre -Action 'PreDeleteItems'

function PreDeleteItems($items) {
#Write event code here

}

DeleteItems_Post:

Register-VaultEvent -EventName DeleteItems_Post -Action 'PostDeleteItems'

function PostDeleteItems($deletedItems, $successful) {
#Write event code here

}

5.2. Objects 81

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

EditItems

EventNames:

• EditItems_Restrictions

• EditItems_Pre

• EditItems_Post

Parameters

Type Name Description
Item[] items The items which should get / are in edit mode.
bool success-

ful
Post:The information whether the Web Service call was successful or not is only available in
Post events.

Unexpected Behaviour

The EditItems event is raised when:

• clicking on Open -> Edit or directly “Update “for the item.

• clicking on Save (not save and close) in the dialog then first CommitItem is fired, and then EditItem

• activating in the the Bill of Materials Tab of the Item dialog a new item

Examples:
EditItems_Restrictions:

Register-VaultEvent -EventName EditItems_Restrictions -Action 'RestrictEditItems'

function RestrictEditItems($items) {
#Write event code here

}

EditItems_Pre:

Register-VaultEvent -EventName EditItems_Pre -Action 'PreEditItems'

function PreEditItems($items) {
#Write event code here

}

EditItems_Post:

Register-VaultEvent -EventName EditItems_Post -Action 'PostEditItems'

function PostEditItems($items, $successful) {
#Write event code here

}

82 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

PromoteItems

EventNames:

• PromoteItems_Restrictions

• PromoteItems_Pre

• PromoteItems_Post

Parameters

Type Name Description
File[] files The files which should get / are assigned to the items.
Item[] items The items which should get / are assigned to the files.
bool success-

ful
Post:The information whether the Web Service call was successful or not is only available in
Post events.

Unexpected Behaviour

PromoteItems event is raised when clicking “Assign / Update Item” on a file or “Update. . .” on a item and afterwards
EditItem event is fired

• When “Assign / Update Item” on a file is clicked wheter the item exists or not, you will only get data about the
files

• When “Update. . .” on an item is clicked, you will only get data about the items

• Changing item category does not fire any event.

Examples:
PromoteItems_Restrictions:

Register-VaultEvent -EventName PromoteItems_Restrictions -Action 'RestrictPromoteItems'

function RestrictPromoteItems($files, $items) {
#Write event code here

}

PromoteItems_Pre:

Register-VaultEvent -EventName PromoteItems_Pre -Action 'PrePromoteItems'

function PrePromoteItems($files, $items) {
#Write event code here

}

PromoteItems_Post:

Register-VaultEvent -EventName PromoteItems_Post -Action 'PostPromoteItems'

function PostPromoteItems($files, $items, $successful) {
#Write event code here

}

5.2. Objects 83

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/file/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

UpdateItemStates

EventNames:

• UpdateItemStates_Restrictions

• UpdateItemStates_Pre

• UpdateItemStates_Post

Parameters

Type NameDescription
Item[] items The updated / updating items for a LifeCycle.Restrictions and Pre: In Restrictions and Pre

you have the future data set on this object like _NewComment, _NewLifeCycleDefinition
and _NewState.Post:In POST you can retrieve the previous information by using the properties
_OldComment, _OldLifeCycleDefinition and _OldState.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
UpdateItemStates_Restrictions:

Register-VaultEvent -EventName UpdateItemStates_Restrictions -Action
→˓'RestrictUpdateItemStates'

function RestrictUpdateItemStates($items) {
#Write event code here

}

UpdateItemStates_Pre:

Register-VaultEvent -EventName UpdateItemStates_Pre -Action 'PreUpdateItemStates'

function PreUpdateItemStates($items) {
#Write event code here

}

UpdateItemStates_Post:

Register-VaultEvent -EventName UpdateItemStates_Post -Action 'PostUpdateItemStates'

function PostUpdateItemStates($items, $successful) {
#Write event code here

}

84 Chapter 5. Code Reference

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

RollbackItemState

EventNames:

• RollbackItemState_Restrictions

• RollbackItemState_Pre

• RollbackItemState_Post

Parameters

Type NameDescription
Item item The item which should get / is reverted for a LifeCycle.Restrictions and Pre: In Re-

strictions and Pre you have the future data set on this object like _NewState and
_NewLifeCycleDefinition.Post:In POST you can retrieve the old information by the prop-
erties _OldState and _OldLifeCycleDefinition.

bool suc-
cess-
ful

Post:The information whether the Web Service call was successful or not is only available in Post
events.

Examples:
RollbackItemState_Restrictions:

Register-VaultEvent -EventName RollbackItemState_Restrictions -Action
→˓'RestrictRollbackItemState'

function RestrictRollbackItemState($item) {
#Write event code here

}

RollbackItemState_Pre:

Register-VaultEvent -EventName RollbackItemState_Pre -Action 'PreRollbackItemState'

function PreRollbackItemState($item) {
#Write event code here

}

RollbackItemState_Post:

Register-VaultEvent -EventName RollbackItemState_Post -Action 'PostRollbackItemState'

function PostRollbackItemState($item, $successful) {
#Write event code here

}

They can be used as parameters in registered functions or script blocks.

Tip: You are not forced to use all the defined arguments, since they are all optional.
Therefore you can pass only the parameters you really need into your script blocks.

5.2. Objects 85

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/

powerEvents

Warning: The arguments are case sensitive and must be named exactly the same as described in the linked
documentation.

5.2.3 Host

The automatic variable $Host is of type PSHost and represents the current host application for PowerShell.
Within the context of powerEvents this can either be the Vault WebServiceExtension running an extended Host version
or your PowerShell IDE.

Syntax

$Host.Name

See also:

For the complete list of properties and methods and for more information see: PSHost Class.

Following properties are always available :

Type NameDescription Ac-
cess
type

String Name An identifier for the PowerShell hosting application. Within Client Customizations this should
be ‘powerEvents Webservice Extension’.

read-
only

PSOb-
ject

Pri-
vate-
Data

Each Host can provide private data that is editable. For example the property ErrorBackground-
Color that is available in several PowerShell IDEs for changing the background color of error
messages.The powerEvents Host allows manipulating the way how Vault users are notified about
Terminating Errors using the OnTerminatingError property.

read-
write

Remarks

In contrast to your PowerShell IDE the powerEvents Host redirects the written output into the logfile.
The format of the output provided by the Write-Host cmdlet can be customised within the according Logging sections.

Error Notifications

By default the powerEvents host is configured to write to the logfile and display a modal Vault restrictions dialog to
notify users about erroneous scripts, modules and exceptions that were thrown by registered Vault events.
The way how users are notified about terminating errors can be changed using the PrivateData and its
OnTerminatingError property that provides all the relevant error details:

$global:Host.PrivateData.OnTerminatingError = [Action[System.Management.Automation.
→˓RuntimeException]] {

param($exception)
$errorType = $exception.GetType().FullName
$errorMessage = $exception.Message
$errorStackTrace = $exception.ErrorRecord.ScriptStackTrace

(continues on next page)

86 Chapter 5. Code Reference

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables?view=powershell-5.1#host
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.host.pshost?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.host.pshost?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-host?view=powershell-5.1#example-8-set-the-background-color-for-error-messages
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-host?view=powershell-5.1#example-8-set-the-background-color-for-error-messages
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/terminating-errors?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/terminating-errors

powerEvents

(continued from previous page)

if($exception.Data['RegisteredEvent'])
{

$script = $exception.Data['RegisteredEvent'].Script.FullName
$vaultEventName = $exception.Data['RegisteredEvent'].Name
Write-Host "An unexpected error has occurred in the script '

→˓$script' for Vault event '$vaultEventName'.`r`n$errorType : $errorMessage`r`n
→˓$errorStackTrace"

}
else
{

Write-Host "An unexpected error has occurred in the script or␣
→˓module '$($exception.ErrorRecord.InvocationInfo.ScriptName)'`r`n$errorType :
→˓$errorMessage`r`n$errorStackTrace"

}
}

Automatic Script reloading

Changes made in the PowerShell files located in the Events or Modules folder are loaded by the powerEvents Host at
every start.
Also when the files are modified while they are loaded, powerEvents automatically executes them again. Restarting
your application is not required.
Adding or removing Scripts or Modules also causes powerEvents to automatically reload the whole configuration.

Please be aware that long running operations or modal dialog boxes can block this script execution (e.g. error dialogs).
Changes that are saved in the meantime may then not take effect for the current script execution, and the original script
execution will continue after such dialogs are closed. However, the changes will take effect immediately on the next
run.
Cmdlets such as Show-Inspector or Show-BOMWindow are an exception. They block the current script execution
with the windows they show, but they still allow nested reloading of scripts (but again, PowerShell operations are only
executed sequentially).

Note: Similarly, also simple Form.ShowDialog or System.Windows.Forms.MessageBox.Show usages, as well as Win-
dow.ShowDialog or System.Windows.MessageBox.Show calls may not block the main window thread from processing
automatic reloads.
If these functions are used - by mistake without owner window assignment - changes at runtime might not be supported
and can lead to misbehavior.
So, as long as these dialogs are open, no automatic reload should be triggered, or a restart of the application may be
necessary for all changes to take effect correctly.

We’re still working on the feature and the documentation to detail what edits are supported.

Keep this functionality in mind when developing new client customizations or when saving changes in your PowerShell
IDE.
In order to disable the automatic realoding mechanism you can use the global flag $powerEvents_ReloadPsScripts
in the Common.psm1 Module:

$global:powerEvents_ReloadPsScripts = $false

After enabling the functionality again, you need to restart the application.

5.2. Objects 87

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/show-inspector/
https://doc.coolorange.com/projects/powergate/en/stable/code_reference/commandlets/show-bomwindow/
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.form.showdialog?view=netframework-4.7#system-windows-forms-form-showdialog
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.messagebox.show?view=netframework-4.7
https://learn.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog?view=netframework-4.7#system-windows-window-showdialog
https://learn.microsoft.com/en-us/dotnet/api/system.windows.window.showdialog?view=netframework-4.7#system-windows-window-showdialog
https://learn.microsoft.com/en-us/dotnet/api/system.windows.messagebox.show?view=netframework-4.7#system-windows-messagebox-show(system-string)

powerEvents

5.2.4 Inventor

The automatic variable $Inventor is of type Application Object and gives direct access to the Inventor’s API.

It is the topmost object in the API hierarchy and supports methods and properties that let you control the Inventor
Application. Most importantly, it provides access to the properties and information of the active document.

Syntax

$Inventor.ActiveDocument

See also:

For the complete list of properties and methods and for more information see: Inventor API Reference Manual.

88 Chapter 5. Code Reference

https://help.autodesk.com/view/INVNTOR/2023/ENU/?guid=GUID-AA811AF0-2494-4574-8C43-4C22E608252F
https://help.autodesk.com/view/INVNTOR/2023/ENU/?guid=GUID-AA811AF0-2494-4574-8C43-4C22E608252F

CHAPTER

SIX

LOGGING

powerEvents uses Apache log4net as core logging library, and additionally PostSharp Diagnostics for extended Debug
logging.
By default, all the logs are stored in a logfile located in ‘C:Users\{USER}\AppData\Local\coolOrange\powerEvents\Logs\powerEvents.log’
and it contains only Infos, Warnings and Errors.
The log4net settings file is located in C:\Program Files\coolOrange\Modules\powerEvents\powerEvents.log4net.
Further information about log4Net Configurations can be found here.

6.1 When to change the logging behavior?

When you have issues with failing script executions or when you want to get a more detailed knowledge about what
powerEvents or powerVault cmdlets are doing, you can increase the loglevel.

Note: When changing the loglevel to DEBUG PostSharp Diagnostics will be enabled and will log all the function
calls into the log files.
This could cause performance issues.

6.2 LogFile

You can see, that there are multiple logging-Appenders used. If you want to change the outputpath or the name of the
logfile, please visit following appender:

2 <appender name="FileAppender"
3 type="log4net.Appender.RollingFileAppender">
4 <param name="File" value="${LOCALAPPDATA}\coolOrange\powerEvents\Logs\

→˓powerEvents.log" />

The logging level for the logfile can be changed in the following lines:

56 <root>
57 <level value="INFO" />
58 <appender-ref ref="FileAppender"/>
59 <appender-ref ref="ColoredConsoleAppender" />
60 </root>

By changing the level to “DEBUG”, log entries wih all the levels between the range Debug and Fatal will be written
to the logfile.

89

https://logging.apache.org/log4net/
http://doc.postsharp.net/5.0/logging
https://logging.apache.org/log4net/release/manual/configuration.html
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/
http://doc.postsharp.net/5.0/logging
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/

powerEvents

This way you can get more details about errors that occur during:

• the execution of client customization scripts (within the powerEvents Host)

• during the execution of Cmdlets or their -Action parameters (also if in external PSHosts)

To control the logging behaviour of powerVault Cmdlets, the following section is used:

61 <logger name="powerVault.Cmdlets">
62 <level value="INFO" />
63 </logger>

Note: When powerVault cmdlet’s are getting used before importing the powerEvents module, not all the powerVault
logs can be redirected to the logger configured in the previously mentioned section.

6.3 PowerShell IDE

PowerShell IDEs like PowerShell console (and PowerShell ISE) are configured to show the logging levels in a different
color.
In order to customize the logging level in the console window, visit following appender:

6.3.1 ColoredConsoleAppender

ColoredConsoleAppenders are working for PowerShell IDE’s that support console windows.

272 <appender name="ColoredConsoleAppender" type="log4net.Appender.
→˓ManagedColoredConsoleAppender">

In the lines

50 <filter type="log4net.Filter.LevelRangeFilter">
51 <levelMin value="INFO" />
52 <levelMax value="FATAL" />
53 </filter>

you can configure the required logging level. You could set the minimal filter level to “DEBUG”, than all the levels
between the range Debug and Fatal will be logged.
This appender allows changing even the colors of the messages, depending on their log level:

20 <mapping>
21 <level value="DEBUG" />
22 <foreColor value="Black" />
23 <backColor value="White" />
24 </mapping>
25 <mapping>
26 <level value="INFO" />
27 <backColor value="DarkGreen" />
28 </mapping>
29 <mapping>
30 <level value="WARN" />
31 <backColor value="DarkYellow" />

(continues on next page)

90 Chapter 6. Logging

https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.host.pshost?view=powershellsdk-1.1.0
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/

powerEvents

(continued from previous page)

32 </mapping>
33 <mapping>
34 <level value="ERROR" />
35 <backColor value="Red" />
36 </mapping>
37 <mapping>
38 <level value="FATAL" />
39 <backColor value="DarkRed" />
40 </mapping>

6.3. PowerShell IDE 91

powerEvents

92 Chapter 6. Logging

CHAPTER

SEVEN

CHANGE LOGS

7.1 powerEvents v24

7.1.1 v24.0.13

05-06-2024

Fixed

• Improved Add-VaultMenuItem -Location ToolsMenu parameter, which failed to add menu items to the Vault
“Tools” menu after incomplete updates to Vault Client 2024.3.
This fixes MissingMethodExceptions caused by older DevExpress 21.1.5 versions that remain installed in the
GAC, e.g. if the recommended CAD application updates were forgotten or the necessary Vault Server 2024.3
update was overlooked on test-environments with additional ADMS installation.

7.1.2 v24.0.12

05-03-2024

Fixed

• Occasional issue with registered LoginVault_Post events where the Vault Client 2021 freezes on login.

• Issue where loading powerEvents fails when logging into Vault via an application that lacks the required Vault
SDK references (e.g. Autodesk.Connectivity.Explorer.ExtensibilityTools.dll).

• Issue where Client Customizations scripts are not executed when logging into Vault via an application without a
user interface (e.g. .NET Console Application).

7.1.3 v24.0.11

23-02-2024

General

• Updated powerVault to version: 24.0.8

Fixed

• Issue where Vault Client and Inventor freeze when registered LoginVault_Post event -Action makes use of Con-
nection.FileManager.AcquireFiles calls.
Since this VDF function is also used by Save-VaultFile, Add-VaultFile and Update-VaultFile, these cmdlets can
also cause the deadlock when they perform a download or a check out.

93

https://help.autodesk.com/view/VAULT/2024/ENU/?guid=Vault_ReleaseNotes_CLC_updates_fixed_defects_2024_3_html
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v24/#v24-0-8
https://justonesandzeros.typepad.com/blog/2013/05/how-to-acquire-files.html?cid=6a0120a5728249970b01a3fcb5affc970b#comment-6a0120a5728249970b01a3fcb5affc970b
https://justonesandzeros.typepad.com/blog/2013/05/how-to-acquire-files.html?cid=6a0120a5728249970b01a3fcb5affc970b#comment-6a0120a5728249970b01a3fcb5affc970b
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/save-vaultfile/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/add-vaultfile/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/update-vaultfile/

powerEvents

7.1.4 v24.0.9

24-01-2024

Fixed

• Issue that LoginVault_Post event -Action was executed too often,
sometimes e.g. twice after logins in Inventor (rarely observed in Vault Client), or again after automatically
reloaded script changes

7.1.5 v24.0.8

21-12-2023

Fixed

• Compatibility Issue with powerJobs Client that prevented the use of powerVault Cmdlets (and VDF Property-
Manager functions) in LoginVault_Post actions.
Unfortunately, when used, also other cmdlet -Action parameters experienced NullReferenceExceptions, which
completely prevented their execution or caused them to terminate unexpectedly.

7.1.6 v24.0.7

16-10-2023

General

• Updated powerVault to version: 24.0.7

7.1.7 v24.0.6

30-08-2023

General

• Updated powerVault to version: 24.0.5

7.1.8 v24.0.5

21-08-2023

Fixed

• Issue where Vault Client and Inventor freeze when client customizations register CheckoutFile events that are
triggered by custom Connection.FileManager.AcquireFiles calls.
Since this VDF function is also used by Add-VaultFile and Update-VaultFile, these cmdlets can also cause the
deadlock when they perform a check out (on main UI thread).

94 Chapter 7. Change logs

https://doc.coolorange.com/projects/powerjobsclient/en/stable/
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v24/#v24-0-7
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v24/#v24-0-5
https://justonesandzeros.typepad.com/blog/2013/05/how-to-acquire-files.html?cid=6a0120a5728249970b01a3fcb5affc970b#comment-6a0120a5728249970b01a3fcb5affc970b
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/add-vaultfile/
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/update-vaultfile/

powerEvents

7.1.9 v24.0.4

11-08-2023

Features

• Folder structure for Client Customizations has been simplified

• The PowerShell runspace, that loads these client customizations, got a friendly name: “coolOrange”.
This makes it easier to debug script executions by attaching a Powershell debugger to the Vault application.

• Client Customizations can now be easily distributed from any environment, whether it’s a development machine
or a productive workstation

General

• Removed the non-intuitive “Events” directory, as it also allows PowerShell scripts to extend the user interface of
Vault Client, Inventor or realizing entire ERP integrations.
Therefore, Scripts are now placed directly in the directory “C:\ProgramData\coolOrange\Client Customiza-
tions” and Modules in the subdirectory of the same name.

• Minor adjustments in text references to “event scripts” in messages for logs and Error Message Boxes

• Windows Permissions for directory “C:\ProgramData\coolOrange” were changed to Read, Write & Delete for
Everyone to allow synchronizing scripts and modules

• The Publish-Customizations.ps1 script has been moved to “C:\ProgramData\coolOrange” but still only supports
the distribution of client customizations

• During Vault application startup, if distribution problems occur with client customizations, the Error Message
Box now displays additional details that help in resolving these issues more effectively

Breaking Changes

Change paths in Customization distribution mechanisms

If you or your IT department use a distribution mechanism to automatically install or update scripts and modules on all
workstations, note that the paths where they are stored must be changed!

Previous Now
C:\ProgramData\coolOrange\powerEvents\
Events

C:\ProgramData\coolOrange\Client
Customizations

C:\ProgramData\coolOrange\powerEvents\
Modules

C:\ProgramData\coolOrange\Client
Customizations\Modules

When updating to this version (or newer), all scripts and modules from the old directory
“C:\ProgramData\coolOrange\powerEvents” are automatically moved to the correct structure.
In addition, powerEvents reminds and assists in loading customizations also from this old directory (for another two
major versions).
However, please be aware that related functionalities - such as the automatic reloading of scripts and the build-in
distribution mechanism - unfortunately no longer work for the obsolete directory.

7.1. powerEvents v24 95

powerEvents

7.1.10 v24.0.3

30-06-2023

General

• Updated Licensing to version: 18.3.1
This significantly improves the performance of loading powerEvents during Vault logins when a Standalone
license is registered for the product.

7.1.11 v24.0.2

09-06-2023

Features

• Script changes can now be saved while modal dialogs are open, resulting in a smoother debugging and develop-
ment experience.
For example, if changes are saved while an Error Message Box or other blocking windows are displayed, the
dialog box can be closed and the current changes will automatically take effect at the next execution.

• For active Vault Client tabs created with Add-VaultTab, the -Action parameter is now automatically re-executed
when changes are automatically reloaded.

Fixed

• Issue where the automatic reloading of script changes stopped working if a reload did not complete. Reasons
for this could be concurrent PowerShell executions or blocked runspaces.
Restarting the host application is now no longer required because it ensures that all recent changes are reloaded,
even if modal dialogs are open when saving.

• Changes to customization scripts are no longer reloaded on MTA background threads, which prevents unexpected
“System.InvalidOperationException: The calling thread must be STA . . .” errors when running scripts that use
WPF elements.

• Issue where Error Message Boxes appeared in the background of the host application

7.1.12 v24.0.1

21-04-2023

General

• Added support for Vault 2024

• Updated Licensing to version: 18.2.29

• End User License Agreement (EULA) has changed

96 Chapter 7. Change logs

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-3-1
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-2-29

powerEvents

7.2 powerEvents v23

7.2.1 v23.0.20

17-04-2023

General

• Updated powerVault to version: 23.0.15.

Fixed

• Issue when using finally statements in script blocks or PowerShell functions, where the execution of -Action pa-
rameters in Register-VaultEvent, Add-VaultTab, Add-VaultMenuItem and Add-InventorMenuItem cmdlets failed
with System.NullReferenceException even before the actual finally block could execute

• Display issue in the Error Message Box where System.Management.Automation.RuntimeException was displayed
for all terminating errors instead of their actual exception type

7.2.2 v23.0.19

06-03-2023

Features

• New cmdlet: Add-InventorMenuItem to register menu items in Inventor ribbons with custom Actions that are
invoked when the menu items are clicked.

Fixed

• Issue where Vault Data Standard (VDS) customizations executed significantly slower, after registered
VaultEvents were triggered from the VDS customization

7.2.3 v23.0.17

22-02-2023

General

• Updated powerVault to version: 23.0.14.

Fixed

• Issue in the Add-VaultTab cmdlet where the Vault Client crashed when terminating exceptions occurred in UI
events, such as ScriptBlocks invoked on $button.add_Click({ ... }) events

7.2.4 v23.0.16

14-02-2023

General

• Updated powerVault to version: 23.0.11.

Features

• Add-VaultMenuItem: Added support to add menu items to the context menu of Vault Folders

Fixed

7.2. powerEvents v23 97

https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-15
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-14
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-11

powerEvents

• Issue where context menu items were not displayed when the Add-VaultMenuItem cmdlet was used for multiple
different locations

• Issue in UpdateFileStates_Restrictions and _Pre events where properties of $files parameter instances return
either empty or wrong values when accessed from outside the registered function or Scriptblock.

• Issue where uninstalling product also uninstalled powerVault, although it was still needed by other products, e.g.
powerJobs Processor.

7.2.5 v23.0.14

01-02-2023

General

• Significant performance improvements when large Inventor assemblies are Checked-in to Vault and AddFile- or
CheckinFile events are registered.
For these events, unncecessary Vault API calls will be prevented when $dependencies,$attachments or
$fileBom parameters are not used.

• Product-wide performance improvements by configuring the log level ‘INFO’ for the <root> logger to avoid
automatically generated DEBUG logs if not configured.

• Updated powerVault to version: 23.0.10.

7.2.6 v23.0.13

12-01-2023

Fixed

• Issue where new “low-level Vault connection” was created against Vault Data Server (ADMS), when working in
environments with dedicated/separated Vault File Server (AVFS).

7.2.7 v23.0.12

15-12-2022

General

• Behavior of Add-VaultMenuItem when called multiple times for same menu item has changed: Instead of
ignoring subsequent calls for same menu item, Add-VaultMenuItem cmdlet now updates the passed -Action for
the menu item.

Features

• Add-VaultMenuItem: Added support to add menu items to the Vault Explorer’s Tools menu

98 Chapter 7. Change logs

https://doc.coolorange.com/projects/powervault/en/stable/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-10

powerEvents

7.2.8 v23.0.11

07-12-2022

Features

• New cmdlet: Add-VaultTab to register a new tab for a specific entity type in the Vault Explorer with an Action
that is invoked when the tab is clicked.

• Simplified enabling and disabling customization scripts by providing a “./Disabled” subdirectory where scripts
can be moved to, instead of uncommenting or commenting the contained Register-VaultEvent ... lines.

Fixed

• Issue that manually disabled/enabled Sample- and standard scripts are automatically reverted after installing Up-
dates.
Note: This will only affect future versions. If sample scripts have been manually enabled (uncommented
Register-VaultEvent ... lines), they can be moved to %ProgramData%/coolOrange/powerEvents/Events
directory after updating from v23.0.9 or earlier.

• Issue that LoginVault_Post event actions were not executed before those of other event registrations

• Issue where updating a property mapped to an AutoCAD property with Update-VaultFile in an event causes the
Vault Client to freeze.

General

• Changed type of property Name on Event results from ‘powerEvents.Cmdlets.VaultEvent’ to ‘String’.

7.2.9 v23.0.9

27-10-2022

General

• Updated powerVault to version: 23.0.8.

Features

• New VaultEvent: LoginVault_Post which gets raised after successfully signing in to Vault.

Fixed

• Issue with AddFile- and CheckinFile events not getting executed when files with empty BOMs (and copyBom
parameter disabled) are checked into Vault.
This applies to all non-modelling files (e.g. drawings, presentation files or automatically generated design visu-
alization files) that are checked in through Inventor or AutoCAD.

7.2.10 v23.0.7

29-09-2022

General

• Updated powerVault to version: 23.0.7.

• The setup has been extended to provide a dependency key that is required for other product setups that depend
on powerEvents

Fixed

• Issue where repair via setup was not possible if powerVault was previously uninstalled

7.2. powerEvents v23 99

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/commandlets/update-vaultfile/
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-8
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-7

powerEvents

• Issue where powerVault was listed twice in Programs and Features after upgrading powerVault

7.2.11 v23.0.6

23-08-2022

Features

• The -Action parameter of the Add-VaultMenuItem cmdlet is invoked with powerVault entities as parameter,
which provide all entity properties without having to implement custom logic to retrieve them

7.2.12 v23.0.5

28-07-2022

Features

• New cmdlet: Add-VaultMenuItem to register menu items with custom actions in the Vault Explorer

• New client customization: SubmitJobsOnVaultMenuItemClick.ps1 to submit jobs from the context-menu (right-
click menu) in Vault when configured in the powerJobs Settings Dialog.

General

• Updated powerVault to version: 23.0.6.
This allows custom applications to execute events registered in customization scripts again when using power-
Vault v23.0.4 or later (see fix v23.0.1).
Also, warning logs like “Creating a low level connection to the server” should no longer appear.

7.2.13 v23.0.1

20-04-2022

Features

• Added support for Vault 2023

• Added support for console logs in PowerShell ISE

General

• Updated powerVault to version: 23.0.1.
Memory usage is reduced when a large number or frequently executed Vault events are registered (see 22.0.9).

Fixed

• Vulnerability in Logging configuration files by updating log4net to v2.0.14 (CVE-2018-1285)

• Issue with ColoredConsoleAppender that caused powershell remote hosts to crash when appender was logging
to console

• Issue where the Action from the Register-VaultEvent was not executed when Vault event was triggered from
custom application

• “Page not found” error page opens after clicking Help button in Control Panel → Add or Remove Programs

100 Chapter 7. Change logs

https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-manually-by-context-menu-item
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-6
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-4
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v23/#v23-0-1
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v22/#v22-0-9
https://www.cvedetails.com/cve/CVE-2018-1285/
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.runspacefactory.createoutofprocessrunspace

powerEvents

7.3 powerEvents v22

7.3.1 v22.0.5

02-03-2022

Features

• New client customization SubmitJobsOnLifecycleTransition.ps1 to submit jobs on lifecycle transitions config-
ured in the powerJobs Settings Dialog.

– Configuration for Vault UDP to submit the Sample.CreateDXF&STEPfromSheetmetal job only for Sheet
Metal parts is no longer required and is now determined by the script.

• Technical Preview: Client customizations (scripts and modules() can be easily distributed and will be automati-
cally downloaded to all workstations upon application startup

General

• Updated Licensing to version: 18.2.27

• Removed Sample.SubmitPublishingJobsOnRelease.ps1 sample as the functionality is replaced by SubmitJob-
sOnLifecycleTransition.ps1

• Directory of Client Customizations: Windows Permissions changed to Read, Write & Delete for Everyone to
allow synchronizing scripts and modules

• Removed support for Custom Objects in the Sample.ValidateProperties.ps1 script as it was not working properly.

Fixed

• Fixed and issue in the Sample.ValidateProperties.ps1 script which caused it to mistakenly show a restriction
when the vault displayname differed from the account name for the same user.

7.3.2 v22.0.4

08-10-2021

Features

• New client customization script Sample.SubmitPublishingJobsOnRelease replaces the script Sam-
ple.TriggerDwfJobOnRelease and handles the publishing of PDF files on the release of Inventor and AutoCAD
drawings, and of DXF and STEP files after releasing sheet metal parts.
Simple configurable settings allow further customization.

• New client customization script Sample.RestrictDisturbingSubmittedJobs.ps1 to restrict changing the Lifecycle
state of files as long as not all their jobs have been processed successfully

General

• Updated Licensing to version: 18.2.26

7.3. powerEvents v22 101

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/job_configuration/job_triggers_tab/#trigger-job-automatically-on-lifecycle-state-changes
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/jobprocessor/jobs/sample_jobs/#sample-createdxf-stepfromsheetmetal
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-2-27
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-2-26

powerEvents

7.3.3 v22.0.1

28-04-2021

Features

• Added support for Vault 2022

General

• Updated Licensing to version: 18.1.24

• End User License Agreement (EULA) has changed

Breaking Changes

Linked properties of Items passed in the ChangeOrder events have a prefix

Linked properties of ChangeOrder Items have to be retrieved by using the ‘Record_’ prefix within the AddChangeOrder
and CommitChangeOrder event actions.

7.4 powerEvents v21

7.4.1 v21.0.7

04-02-2021

Features

• Logfile contains more details about erroneous scripts and provides the filename and line number of PowerShell
errors together with the name of the failed Vault event

General

• Improved informations displayed in the Error notification for Vault users, even because his preconfigured pro-
cesses may not have been fully executed in error situations

• Updated Licensing to version: 18.1.22

Fixed

• Issues with missing filenames and wrong line numbers in StackTraces and confusing “at <ScriptBlock>” entries
beeing provided in Error notifications when the execution of registered Vault events fails

7.4.2 v21.0.6

21-12-2020

General

• Updated Licensing to version: 18.1.21

Fixed

• Issue that errors were logged multiple times

• Issue that led to an unusable machine and failing Jobs after running JobProcessor for a long time

102 Chapter 7. Change logs

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-1-24
https://doc.coolorange.com/projects/powervault/en/stable/code_reference/objects/item/#examples
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-1-22
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-1-21

powerEvents

7.4.3 v21.0.4

06-11-2020

Features

• Error notification informs about erroneous scripts and when the registered Vault events are raised, even about
failed script block or PowerShell functions

General

• Updated Licensing to version: 18.1.19

• Copyright notices have changed

7.4.4 v21.0.3

08-06-2020

Fixed

• Compatibility-Issue with other coolOrange products using an older Logging version

7.4.5 v21.0.1

27-04-2020

Features

• Added support for Vault 2021

General

• End User License Agreement (EULA) has changed

• Updated Licensing to version: 18.1.17

• Added powerEvents Information shortcut to startmenu

• Removed powerEvents Help shortcut from startmenu as it can be accessed via powerEvents Information shortcut

• Removed Splashscreen

7.5 powerEvents v20

7.5.1 v20.0.7

05-11-2019

General

• Updated Licensing to version: 18.0.10

7.5. powerEvents v20 103

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-1-19
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-1-17
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-0-10

powerEvents

7.5.2 v20.0.6

25-10-2019

General

• Updated Licensing to version: 18.0.9

7.5.3 v20.0.5

20-08-2019

General

• Updated Licensing to version: 18.0.8

7.5.4 v20.0.4

29-05-2019

• Official Release

Features

• Added support for Token Licensing

• Added support for Stand-Alone Licensing

General

• End User License Agreement (EULA) has changed

• Updated Licensing to version: 18.0.7

• Assemblies coolorange.licensing and coolorange.Utils.UI.v18.0 now gets installed in the GAC

• Trial mode expires after 30 days

• Splashscreen is shown when connecting to Vault

Fixed

• Issue when using Register-VaultEvent and Unregister-VaultEvent in different runspaces (e.g. in PowerShell ISE)
did not work properly

7.5.5 v20.0.1-beta

14-01-2019

Features

• Added support for Vault, Inventor and AutoCAD 2020 (BETA)

104 Chapter 7. Change logs

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-0-9
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-0-8
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-0-7

powerEvents

7.6 powerEvents v19

7.6.1 v19.0.8

24-04-2018

• Official Release

Features

• powerEvents cmdlets can be used in every IDE

General

• Updated to PowerShell 4.0

• replaced Log4PostSharp with PostSharp Diagnostics for extended Debug logging

• Re-enabled extended Debug Logging for Vault 2019

• Added powerEvents ISE shortcut in startmenu

• Assembly coolOrange.VaultServices_[Vault Version] gets installed into the GAC

Fixed

• Issue where logging did not work when powerEvents was used in a 32-Bit process

7.6.2 v19.0.1beta

24-01-2018

Features

• Added support for Vault, Inventor and AutoCAD 2019 (BETA)

Note: Extended Debug Logging is disabled for Vault 2019

7.7 powerEvents v18

Vault 2016 and earlier

CommitItems event is raised when changing the LifeCycleState of items CommitItems event is fired after the Up-
dateItemLifecycleState event

7.6. powerEvents v19 105

http://doc.postsharp.net/5.0/logging

powerEvents

7.7.1 v18.0.15

15-12-2017

General

• Updated powerVault to version 18.0.19

Fixed

• Vault events are not getting executed because of compatibility issue with powerVault 18.0.19 and later

7.7.2 v18.0.14

13-10-2017

Fixed

• Issue that “low-level Vault connection” was created against Autodesk Data Management Server (AMDS), when
working with SSL connections

7.7.3 v18.0.13

25-08-2017

General

• Updated powerVault to version: 18.0.17

Fixed

• Disabled Sample.ValidateProperties.ps1 by default, by commenting Register-VaultEvent calls in script

7.7.4 v18.0.11

18-08-2017

General

• Removed property SourceObject from Event

Features

• New cmdlet: Unregister-VaultEvent

• Scripts and Modules become automatically reloaded at runtime, when developping new scripts or modifying
them

• CustomObject- Events are now supported read more

• ChangeOrder - Events are now supported read more

Fixed

• Issue where PowerShell Host depending Cmdlets like Out-File or Out-Host were throwing an exception when
used in Vault Event Actions

• Issue that “low-level Vault connection” was created against Autodesk Data Management Server (ADMS), when
working in environments where ADMS and Autodesk Vault Filestore Server (AVFS) are located on different
environments

106 Chapter 7. Change logs

https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v18/#v18-0-19
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v18/#v18-0-19
https://doc.coolorange.com/projects/powervault/en/stable/change_logs/powerVault_v18/#v18-0-17
https://docs.microsoft.com/en-us/previous-versions/powershell/module/microsoft.powershell.utility/out-file?view=powershell-5.0
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/out-host

powerEvents

7.7.5 v18.0.7

17-07-2017

• Official Release

General

• All File- Item- and Folder- Events are supported read more

• New cmdlet: Register-VaultEvent

• New cmdlet: Add-VaultRestriction

• Added standard logging with installation into GAC

• Added client customization samples

Fixed

• poweEvents did not load in AutoCAD and Inventor, now it works in both applications

• Performance issues where too much memory was consumed, because multiple PowerShell sessions were created

powerEvents is a Vault extension, which allows to take advantage of the Vault Client events, such as check-in/-out,
lifecycle change and the like.
It also provides functionality to programmatically extend the UI of the Vault Client with Context Menu Items or Tabs
and the Inventor with Menu Items in the Inventor Ribbons.

You can write custom code that will be executed on the according event via PowerShell. Let’s say you would like to fill
or clear some properties on a lifecycle state change,
automatically rename files when imported via drag&drop or prevent a lifecycle state transition when a combination of
properties does not match your rules, etc.
The product makes it easy to create such logic in a simple PowerShell script and, if desired, distribute this customization
directly to other Vault environments.

7.7. powerEvents v18 107

	Installation
	Requirements
	Setup
	Windows permissions
	Install Locations
	Updates
	Uninstall

	Activation and Trial limitations
	Trial limitations
	Activation
	License Information
	Command-line

	Licensing Options
	Stand Alone Licensing
	Offline activation

	Getting started
	Sample scripts
	Activating a sample script
	Testing the script

	Client Customizations
	Sample.RestrictDisturbingSubmittedJobs
	Testing

	Sample.ValidateProperties
	Testing

	SubmitJobsOnLifecycleTransition
	Vault Configuration
	Testing

	SubmitJobsOnVaultMenuItemClick
	Vault Configuration
	Testing

	Scripts
	Enable or Disable scripts
	Create or edit scripts
	Debug scripts

	Modules
	Errors
	Distribution

	Code Reference
	Cmdlets
	Add-InventorMenuItem
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Add-VaultMenuItem
	Syntax
	Parameters
	VaultExplorerMenu

	Return type
	Remarks
	Examples

	Add-VaultRestriction
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Add-VaultTab
	Syntax
	Parameters
	VaultTabEntityType

	Return type
	Remarks
	Examples

	Register-VaultEvent
	Syntax
	Parameters
	Return type
	Remarks
	Restrictions
	Pre
	Post

	Examples

	Unregister-VaultEvent
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Objects
	Event
	Syntax
	Examples

	VaultEvent
	Syntax
	Remarks
	Connection Events
	LoginVault

	Change Order Events
	AddChangeOrder
	CommitChangeOrder
	DeleteChangeOrders
	EditChangeOrder
	UpdateChangeOrderState

	Custom Entity Events
	UpdateCustomEntityStates

	File Events
	AddFile
	CheckinFile
	CheckoutFile
	DeleteFiles
	DownloadFiles
	MoveFile
	UpdateFileStates

	Folder Events
	AddFolder
	DeleteFolder
	MoveFolder

	Item Events
	AddItem
	CommitItems
	DeleteItems
	EditItems
	PromoteItems
	RollbackItemState
	UpdateItemStates

	Host
	Syntax
	Remarks
	Error Notifications
	Automatic Script reloading

	Inventor
	Syntax

	Logging
	When to change the logging behavior?
	LogFile
	PowerShell IDE
	ColoredConsoleAppender

	Change logs
	powerEvents v24
	v24.0.13
	v24.0.12
	v24.0.11
	v24.0.9
	v24.0.8
	v24.0.7
	v24.0.6
	v24.0.5
	v24.0.4
	v24.0.3
	v24.0.2
	v24.0.1

	powerEvents v23
	v23.0.20
	v23.0.19
	v23.0.17
	v23.0.16
	v23.0.14
	v23.0.13
	v23.0.12
	v23.0.11
	v23.0.9
	v23.0.7
	v23.0.6
	v23.0.5
	v23.0.1

	powerEvents v22
	v22.0.5
	v22.0.4
	v22.0.1

	powerEvents v21
	v21.0.7
	v21.0.6
	v21.0.4
	v21.0.3
	v21.0.1

	powerEvents v20
	v20.0.7
	v20.0.6
	v20.0.5
	v20.0.4
	v20.0.1-beta

	powerEvents v19
	v19.0.8
	v19.0.1beta

	powerEvents v18
	v18.0.15
	v18.0.14
	v18.0.13
	v18.0.11
	v18.0.7

