
powerLoad (bcpToolkit)

coolOrange s.r.l.

May 16, 2024

POWERLOAD (BCPTOOLKIT)

1 Installation 1
1.1 Requirements . 1
1.2 Setup . 1
1.3 Install locations . 1
1.4 Updates . 2
1.5 Uninstall . 2

2 Activation and Trial limitations 3
2.1 Trial limitations . 3
2.2 Activation . 3
2.3 Licensing Options . 5

3 Getting Started 7
3.1 Using the Cmdlets . 7
3.2 Using the .NET library . 8
3.3 Using the bcpViewer . 10
3.4 Creating a sample package . 16
3.5 Preview the package . 17
3.6 Exporting a test package . 18

4 Code Reference 19
4.1 Cmdlets . 19
4.2 .NET Library . 24

5 Logging 45
5.1 When to change the logging behavior? . 45
5.2 LogFile . 46
5.3 bcpViewer . 46
5.4 PowerShell IDE . 46
5.5 Projects using .NET Library . 48

6 Change logs 49
6.1 powerLoad (bcpToolkit) v24 . 49
6.2 powerLoad (bcpToolkit) v20 . 50
6.3 bcpToolkit v19 . 51
6.4 bcpDevKit v18 . 53
6.5 bcpDevKit v16 . 54
6.6 bcpChecker v18 . 55
6.7 bcpChecker v16 . 55
6.8 bcpChecker v15 . 56

i

7 bcpViewer 57

8 .NET Library 59

9 Cmdlets 61

ii

CHAPTER

ONE

INSTALLATION

1.1 Requirements

Operating System: 64-bit only

• Microsoft Windows 7 SP1

• Microsoft Windows 8.1

• Microsoft Windows 10

.NET Framework: 4.7 or higher

Windows PowerShell: PowerShell 4.0 or higher

1.2 Setup

The powerLoad (bcpToolkit) setup is delivered as an executable and accepts the standard windows installer arguments
documented here.
To accept the products EULA when starting the setup in silent mode pass the ACCEPT_EULA=1 argument.

1.3 Install locations

powerLoad (bcpToolkit) tools are installed in the following locations:

• All program libraries and executable files are placed in C:\Program Files\coolOrange\bcpToolkit

• All PowerShell libraries are placed in C:\Program Files\coolOrange\Modules\bcpToolkit

Following shared libraries are installed in GAC:

• bcpDevKit.dll

• coolOrange.Logging.dll

Following shortcuts are added in the start menu:

• bcpViewer - Starts the bcpViewer application

• bcpToolkit Console - Opens the PowerShell Console and loads the bcpToolkit module

• bcpToolkit Information - Opens the About dialog with product related information

• bcpToolkit License Information - Opens the License Information dialog to activate the product

• bcpToolkit Logs - Opens the log file location

1

https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-5.1
https://docs.microsoft.com/en-us/windows/desktop/Msi/command-line-options
https://doc.coolorange.com/projects/licensing/en/18.3/license_information/

powerLoad (bcpToolkit)

1.4 Updates

To install a newer version of powerLoad (bcpToolkit) execute the setup file of the new version. This will automatically
update the files in the existing installation.

Tip: When upgrading from bcpChecker versions earlier than 17.0 (e.g. bcpChecker 2015 or 2016) we recommend
uninstalling the old bcpChecker version before upgrading

1.5 Uninstall

In case you want to remove powerLoad (bcpToolkit) from your computer you can:

• Execute the setup file again. This will give you the option to repair or remove bcpToolkit. Click on “Remove”
to uninstall the program.

• Go to “Control Panel - Programs and Features”, find “coolOrange bcpToolkit” and run “Uninstall”.

2 Chapter 1. Installation

CHAPTER

TWO

ACTIVATION AND TRIAL LIMITATIONS

2.1 Trial limitations

2.1.1 bcpViewer

Only the first 50 elements will display full informations (names, properties, references). The Folder structure is shown
completely.
No access to additional Checks e.g. File existence check, etc.

2.1.2 .NET library

In trial mode, BCP-packages can be created and all its metadata can be fully imported into Vault.
Please note that since no real files will be imported into Vault, opening them will fail!

2.1.3 Cmdlets

In trial mode, BCP-packages can be opened and manipulated without limitation.
However the export of a package will contain only the metadata, independent of a specified -NoSourceFiles parameter.

Export-BcpPackage -To ...

in trial mode same result as:
Export-BcpPackage -To ... -NoSourceFiles

Keep in mind that since links to your real files get removed in the exported package, opening the files later in Vault will
fail!

2.2 Activation

In order to activate the product you have following options:

3

powerLoad (bcpToolkit)

2.2.1 License Shortcut

Open the Start Menu and use the ‘bcpToolkit 24.0 License Information’ shortcut:

2.2.2 bcpViewer Menu

Launch the bcpViewer 24.0 shortcut, open the ‘Help’ Menu and click the ‘About’ button:

2.2.3 Command-line

Launch the License Information tool located in the install directory with the required Command-line arguments.
Example: Activating a Stand-Alone license using a serial number:

"C:\Program Files\coolOrange\bcpToolkit\License.exe" --StandAlone --Serialnumber="XXXXX-
→˓XXXXX-XXXXX-XXXXX"

For more information about activating the product, see Licensing.

Activate powerLoad (bcpToolkit) on export machine

The environment where your project, that uses the bcpDevKit .NET Library, gets executed must be activated in order
to create productive BCP packages.

4 Chapter 2. Activation and Trial limitations

https://doc.coolorange.com/projects/licensing/en/18.3/license_activation/#activating-via-command-line
https://doc.coolorange.com/projects/licensing/en/18.3/licensingmodels/#standalone
https://doc.coolorange.com/projects/licensing/en/18.3/license_activation/

powerLoad (bcpToolkit)

The same applies when automating operations via PowerShell scripts with the bcpToolkit Cmdlets.
However build- and test-machines do not need to be activated.

2.3 Licensing Options

2.3.1 Stand Alone Licensing

This product supports the Stand-Alone licensing model which is charged based on the time the license is valid and the
number of seats the license is valid for.
For further information see the detailed description of the Stand-Alone licensing model.
In the License Information Dialog the remaining days until the license expires can be found.

License expired

When the the license expires, the bcpViewer will switch back to Trial mode, the .NET library will throw an exception
and the Cmdlets also switch back to Trial mode.

Offline activation

The serial number of the license and the machine code are required to generate an activation file.
The activation file for an offline activation can be generated and downloaded on the following site: bcpToolkit - Acti-
vation file generator

2.3. Licensing Options 5

https://doc.coolorange.com/projects/licensing/en/18.3/licensingmodels/#standalone
https://doc.coolorange.com/projects/licensing/en/18.3/license_information/
https://doc.coolorange.com/projects/licensing/en/18.3/license_information/
https://doc.coolorange.com/projects/licensing/en/18.3/license_activation/#offline-activation
https://app.cryptolens.io/Form/A/KQUp8tVv/369
https://app.cryptolens.io/Form/A/KQUp8tVv/369

powerLoad (bcpToolkit)

6 Chapter 2. Activation and Trial limitations

CHAPTER

THREE

GETTING STARTED

3.1 Using the Cmdlets

3.1.1 Start the PowerShell environment

In order to get started either open any PowerShell IDE and load the bcpToolkit Module by calling Import-Module
bcpToolkit or open the bcpToolkit Console shortcut in the start menu, which already loads the module for you.

3.1.2 Open the package

Before you are able to work with your BCP package you have to open it in your PowerShell environment.
You can use our VaultBcp 2024 if you need a sample package.

Open the package by calling Open-BcpPackage. For now we ignore all the bomBlob*.xml files in the package.

Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage' -IgnoreBomBlobs

3.1.3 Export the package

After the BCP package is loaded, we can export it to a new directory without links to the real files.
This allows importing the package on test environments, without the need for the source files at all.

Execute Export-BcpPackage with the arguments To and NoSourceFiles.

Export-BcpPackage -To 'C:\Temp\bcp_samplepackage_no_files\' -NoSourceFiles

7

powerLoad (bcpToolkit)

3.1.4 Close the package

When we are done with the export, we can close the previously opened BCP package.

Running the cmdlet Close-BcpPackage will release all the memory resources.

Close-BcpPackage

3.2 Using the .NET library

To use the .NET library you first need to install powerLoad (bcpToolkit) on your development machine.
The library contains all the API’s to create your own BCP-package.

It requires your project targeting at least .NET framework 4.7 !

1. Reference the bcpDevKit assembly

In Visual Studio right-click on References and click “Add References”.
Search for the assembly “bcpDevKit” in Assemblies-tab and add it to your project.

The assembly will be referenced from the GAC, therefore set “Copy Local” to “false”.

2. Create the BcpServiceBuilder and set the PackageLocation

In order to gain access to the bcpDevKit API’s, following namespaces should be imported:

using bcpDevKit;
using bcpDevKit.Entities;

Root entry point is the class BcpServiceBuilder:

var bcpSvcBuilder = new BcpServiceBuilder();

First we set the target BCP Version for which the package should be created:

8 Chapter 3. Getting Started

powerLoad (bcpToolkit)

bcpSvcBuilder.Version = BcpVersion._2024;

Then we set the PackageLocation, where the Package should be exported to:

bcpSvcBuilder.SetPackageLocation("C:\\Temp\\HelloWorldPackage");

3. Build the BcpService and start working

After preparing the BcpServiceBuilder with the desired settings we can now build the BcpService:

var bcpService = bcpServiceBuilder.Build();

The BcpService gives us access to all the functionality for creating a importable BCP package.
We can start to add Files and Items to our package:

var file = bcpService.FileService.AddFileWithIteration("$/HelloWorldFiles/Hello.iam", @
→˓"C:\HelloWorldFiles\Hello.iam");
var item = bcpService.ItemService.AddItem("999", "World", "Title 999", "Desc 999");

4. Create the BCP package

Finally we can create and export our BCP package to our package location by calling Flush on the BcpService:

bcpService.Flush();

After calling the function you can find the created package in your packageDirectory:

The package can now be used to import the data into Vault.

Install powerLoad (bcpToolkit) on customer machine

When shipping the binaries of your project to the customer, also the customers machine requires a powerLoad
(bcpToolkit) installation.
Therefore delivering the bcpDevKit assembly within your project should be avoided, so that new bcpDevKit versions
can continue to be easily updated at the customer’s site.

See the complete example:

3.2. Using the .NET library 9

powerLoad (bcpToolkit)

1 using System;
2 using bcpDevKit;
3 using bcpDevKit.Entities;
4

5 namespace HelloWorldPackage
6 {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 var bcpSvcBuilder = new BcpServiceBuilder();
12 bcpSvcBuilder.Version = BcpVersion._2024;
13 bcpSvcBuilder.SetPackageLocation("C:\\Temp\\HelloWorldPackage");
14

15 var bcpService = bcpSvcBuilder.Build();
16

17 var file = bcpService.FileService.AddFileWithIteration("$/
→˓HelloWorldFiles/Hello.iam", @"C:\HelloWorldFiles\Hello.iam");

18 var item = bcpService.ItemService.AddItem("999", "World", "Title␣
→˓999", "Desc 999");

19

20 bcpService.Flush();
21 }
22 }
23 }

3.3 Using the bcpViewer

3.3.1 Acceptance test

The first thing you should do for a acceptance test is to define how exactly the final vault should look like. E.g.

• Folder/Project structure

• What entities get which lifecycle/category

• How should the revision schemes be?

• What information should be in the revision table?

• Which udps are needed and what will be written into them?

• Are customizations needed?

There is much more, but the above things are the core points. In fact, you should do this before you do anything else.
After you have defined how the result should be you have to look in your source system for example objects.

For a successful evaluation you will need one object of every kind. How many there will be depends on the Vault you
have defined. E.g. If you have two categories for IDWs these are two objects not just one. Some of the objects could
be:

• IDW with category A

• IDW with category B

• IPT

10 Chapter 3. Getting Started

powerLoad (bcpToolkit)

• Derived part

• Content center file

• Folder with category A

• Folder with category B

• Project

• . . .

It would be best to write down what you need before you proceed.

Now that you know what you need and how it should look like you can search for the sample files in your source system.
Write down one example for every element you have defined above.

Now you can use bcpViewer to verify the path of every file, the category and its properties. If you are happy with the
result you can import the package into your Vault with VaultBCP.

3.3.2 Calculate behaviors

The “Used Behaviors” dialog gives you a report about the used behaviors in your BCP package e.g property definitions,
categories, revisions, lifecycle and users.
This gives you the opportunity to check against your Vault whether you really have defined all the properties, lifecycles,
categories, etc. that are required for a correct import of the BCP package.

To open the “Used Behaviors” dialog, click on “Calculate Behaviors” in the menu.

3.3. Using the bcpViewer 11

powerLoad (bcpToolkit)

Note: The report can be exported as excel document.

3.3.3 Files existence check

With the file existence check you can find all entries in your BCP Package which are missing and so avoid annoying
errors during the import.

To start the file existence check, open the Checks menu and click on the Files Exist button.

With bcpViewer you can preview your BCP package before it is imported into Vault, in order to prevent errors that will
be found after hours of processing.

3.3.4 Open a package

Before you can start you need a BCP package.
If you don’t have one, you can use our VaultBcp 2024 sample package.

Launch the bcpViewer 24.0 shortcut on your Desktop and click on “File” → “Open” → “Folder Icon” for choosing
your BCP package:

Note: Choose the directory that contains the Vault.xml file, not a subfolder or the parent directory!

After opening the BCP package once, you can use the “Load existing Database” checkbox. For large packages, this
option saves a lot of loading time.
As soon as your package is analyzed you can continue.

12 Chapter 3. Getting Started

powerLoad (bcpToolkit)

3.3.5 Check Files

By clicking on a folder the containing files are shown.
When selecting a file, you can see it’s dependencies and where it is used.

3.3.6 Check Items

By clicking on ItemMaster in the left panel all the items are shown.
After selecting an item, you get informations about the associated files and the Bill of Material.

3.3. Using the bcpViewer 13

powerLoad (bcpToolkit)

3.3.7 Check Behaviours

On files and items you can check their category, classification, lifecycle definition, state or other information.
You can view all their revisions and versions directly by expanding them.
On the right side of the Window you can see all the user defined properties of the selected element (system properties
are not shown).

14 Chapter 3. Getting Started

powerLoad (bcpToolkit)

3.3.8 Good to know

The best way to complete a migration to Vault is with an acceptance test.
With bcpViewer you can check the success of this test before the actual import.

Additional checks like the Files existence check and the Behaviours calculation can help you on this.
They can be accessed via Toolbar → “Checks”:

Restrictions: Depending on your machine, large bcp packages (> 1 GB) can take up to 5 minutes and more to load

3.3. Using the bcpViewer 15

powerLoad (bcpToolkit)

3.4 Creating a sample package

Utilities like the Autodesk Data Export Utility or Autodesk Data Transfer Utility are able to create BCP packages out
of the box.
If you need a way to create your own BCP package, you could use the bcpDevKit .NET Library in your own Visual
Studio project.

Follow these steps to use the .NET library in your C# project, and get ready to implement following example:

1 using System;
2 using bcpDevKit;
3 using bcpDevKit.Entities;
4

5 namespace HelloWorldPackage
6 {
7 class Program
8 {
9 static void Main(string[] args)

10 {
11 var bcpSvcBuilder = new BcpServiceBuilder();
12 bcpSvcBuilder.Version = BcpVersion._2024;
13 bcpSvcBuilder.SetPackageLocation("C:\\Temp\\HelloWorldPackage");
14

15 var bcpService = bcpSvcBuilder.Build();
16

17 var file = bcpService.FileService.AddFileWithIteration("$/
→˓HelloWorldFiles/Hello.iam", @"C:\HelloWorldFiles\Hello.iam");

18 var item = bcpService.ItemService.AddItem("999", "World", "Title␣
→˓999", "Desc 999");

19

20 bcpService.Flush();
21 }
22 }
23 }

Make sure following directory exists on disk ‘C:\Temp\HelloWorldPackage’.
When running your new project several xml files should be created inside there.

This newly created BCP package would now be ready for an import into Vault.

16 Chapter 3. Getting Started

powerLoad (bcpToolkit)

3.5 Preview the package

In order to display your BCP package in a Vault-like UI, you can use bcpViewer.
Launch the bcpViewer 24.0 shortcut on your Desktop and open the package ‘C:\Temp\HelloWorldPackage’ as described
here.

You can navigate to the folder ‘$/HelloWorldFiles’ and see the contained file ‘Hello.iam’, as well as the item within the
ItemMaster.

3.5. Preview the package 17

powerLoad (bcpToolkit)

3.6 Exporting a test package

Since the import of large packages takes some time, we can create a package that does not contain the real files.
The bcpToolkit commandlets can be used to create a new test-package out of our previous BCP package with only the
metadata information.
Start a new PowerShell environment and import the bcpToolkit module by clicking the bcpToolkit Console shortcut
in the start menu as described here.
Use Open-BcpPackage to open the original BCP package in your PowerShell environment.

Open-BcpPackage -Path 'C:\Temp\HelloWorldPackage'

The opening of the BCP package should be very fast, because the package got already opened in bcpViewer before.
Next we can directly export the package without links to the real files to a new package directory.

Execute Export-BcpPackage with the arguments To and NoSourceFiles.

Export-BcpPackage -To 'C:\Temp\HelloWorldPackage_Test' -NoSourceFiles

The new test package in the directory ‘C:\Temp\HelloWorldPackage_Test’ can now be copied and imported on any
Vault test environment without the need for the source files.

18 Chapter 3. Getting Started

CHAPTER

FOUR

CODE REFERENCE

The Code Reference section describes:

4.1 Cmdlets

4.1.1 Close-BcpPackage

Closes an open BCP package.

Syntax

Close-BcpPackage [[-Path] <DirectoryInfo>] [<CommonParameters>]

Parameters

Type Name Description Default value Op-
tional

Directory-
Info

Path Directory of the opened BCP package that should
get closed

The last opened BCP
package

yes

Return type

Bool: on success the cmdlet returns $true otherwise $false.
$result.Error ← On failure with an additional property ‘Error’ containing the Exception
$result.Location ← The directory where the closed BCP package is located
$result.DatabaseLocation ← The location of the internal Database-file of the closed BCP package

19

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2

powerLoad (bcpToolkit)

Remarks

The cmdlet closes the previously opened BCP package within the current AppDomain.
When multiple BCP packages are opened simultaneously the Path to the desired BCP package can be specified.

After closing a BCP package ongoing operations will not use the closed package any more.
Memory resourses and locks to the internal Database-file become automatically released.

Examples

In the following examples we are using our VaultBcp 2024 sample package for demonstration purposes:
Closing the previously opened BCP package

Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage' -IgnoreBomBlobs
#...
Close-BcpPackage

Closing one of several opened BCP packages

Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage' -IgnoreBomBlobs
Open-BcpPackage -Path '.\bcp_customerpackage'
Close-BcpPackage -Path 'C:\Temp\bcp_samplepackage'

Validating if the BCP package got closed correctly

$closePackageResult = Close-BcpPackage
if(-not $closePackageResult) {

throw "Failed with error: " + $closePackageResult.Error.Message
}

Closing a BCP package and using the close result

$openPackageResult = Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage' -IgnoreBomBlobs

$closePackageResult = $openPackageResult.Location | Close-BcpPackage

write-host "Closed package '$($closePackageResult.Location.Fullname)'..."
write-host "Version: '$([int]$closePackageResult.Version)'"
write-host "Internal database: '$($closePackageResult.DatabaseLocation.Name)'"

4.1.2 Export-BcpPackage

Exports the opened BCP package to the specified directory.

20 Chapter 4. Code Reference

powerLoad (bcpToolkit)

Syntax

Export-BcpPackage [[-Path] <DirectoryInfo>] [[-To] <DirectoryInfo>] [-NoSourceFiles] [
→˓<CommonParameters>]

Parameters

Type Name Description Default value Op-
tional

Direc-
tory-
Info

Path Directory of the opened BCP
package that should get ex-
ported

The last opened BCP package yes

Direc-
tory-
Info

To Destination directory that
will containing the VaultBCP
xml files

The directory ‘.\Export’ or the current directory ‘.’
when the package got opened by reusing an existing in-
ternal Database

yes

Switch-
Param-
eter

No
Source-
Files

The export package will be
created without links to the
real files

False yes

Return type

Bool: on success the cmdlet returns $true otherwise $false.
$result.Error ← On failure with an additional property ‘Error’ containing the Exception
$result.Location ← The directory where the exported BCP package is located
$result.DatabaseLocation ← The location to the internal Database-file of the exported BCP package (only specified
when the exported BCP package is opened)

Remarks

The cmdlet exports the previously opened BCP package to a destination directory.
When multiple BCP packages are opened simultaneously the Path to the desired BCP package can be specified.

The internal Database becomes exported to the destination directory requested in the To parameter.
When the specified directory does not exist it will be automatically generated.

For testing purpose it can be useful to export the package with the NoSourceFiles parameter, in order to get a package
that can be imported into Vault without the need for the real files.

Examples

In the following examples we are using our VaultBcp 2024 sample package for demonstration purposes:
Exporting the previously opened BCP package

Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage'
#...
Export-BcpPackage -To 'C:\Temp\bcp_samplepackage\Export_01'

Exporting several opened BCP packages

4.1. Cmdlets 21

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2

powerLoad (bcpToolkit)

Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage'
Open-BcpPackage -Path '.\bcp_customerpackage' -Version 2024 -IgnoreBomBlobs

Export-BcpPackage -Path 'C:\Temp\bcp_samplepackage' '.\bcp_customerpackage' | Export-
→˓BcpPackage

Validating if the BCP package got exported correctly

$exportPackageResult = Export-BcpPackage -To 'P:\laplapla'
if(-not $exportPackageResult) {

throw "Failed with error: " + $exportPackageResult.Error.Message
}

Exporting a BCP package to a relative path and using the export result

$exportPackageResult = 'C:\Temp\bcp_samplepackage' | Export-BcpPackage -To '.\Export_02'

write-host "Exported package to '$($exportPackageResult.Location.Fullname)'..."
write-host "Version: '$([int]$exportPackageResult.Version)'"

4.1.3 Open-BcpPackage

Opens the specified directory containing the VaultBCP xml files, for further operations.

Syntax

Open-BcpPackage [-Path] <DirectoryInfo> [[-Version] <BCPVersion>] [-IgnoreBomBlobs] [-
→˓Force] [<CommonParameters>]

Parameters

Type Name Description Default value Op-
tional

DirectoryInfo Path Directory containing the VaultBCP xml files no

BcpVersion Version The Vault version of the BCP package BcpVer-
sion._2024

yes

SwitchParam-
eter

Ignore-
BomBlobs

All the bomBlob*.xml files get ignored False yes

SwitchParam-
eter

Force Forces the reopening of a previously opened BCP
package

False yes

22 Chapter 4. Code Reference

https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2

powerLoad (bcpToolkit)

Return type

Bool: on success the cmdlet returns $true otherwise $false.
$result.Error ← On failure with an additional property ‘Error’ containing the Exception
$result.Location ← The directory in which the opened BCP package is located
$result.DatabaseLocation ← The location of the internal Database-file containing the whole BCP-package data

Remarks

The cmdlet opens the specified BCP package in the current AppDomain.
In order to allow ongoing operations to work correctly, it is important to specify the correct Version of the BCP package.

When opening a BCP package for the first time, the whole package get’s imported into an internal Database.
By doing this, the cmdlet reuses the existing Database file after BCP packages got opened once, for improving perfor-
mance with large packages.

In order to bypass this optimization, the BCP package can be reopened by using the Force parameter.
Afterwards changes made to the original xml files will be reloaded into the internal Database.

The cmdlet supports opening multiple packages one after the other.
When the specified BCP package is already open, the opened package will be reused, as long as the Force parameter
is not specified.

Note: In order to improve performance the IgnoreBomBlobs parameter can be used to skip the loading of all the
bomBlob._.xml* files.
That means ongoing operations like e.g. Export-BcpPackage will ignore those files too, which could have an impact
on the ongoing import into Vault!

Examples

In the following examples we are using our VaultBcp 2024 sample package for demonstration purposes:
Opening a BCP package

Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage'

Opening a BCP package by settings its Version and by ignoring all the BomBlobs

'C:\Temp\bcp_samplepackage' | Open-BcpPackage -Version 2024 -IgnoreBomBlobs

Forcing the reopening of a BCP package and validating if it got opened correctly

$openPackageResult = Open-BcpPackage -Path 'C:\Temp\bcp_samplepackage' -Force
if(-not $openPackageResult) {

throw "Failed with error: " + $openPackageResult.Error.Message
}

Opening a BCP package by relative path and using the opening result

$openPackageResult = Open-BcpPackage -Path '.\Temp\bcp_samplepackage'

write-host "Opened package '$($openPackageResult.Location.Fullname)'..."
write-host "Version: '$([int]$openPackageResult.Version)'"
write-host "Internal database: '$($openPackageResult.DatabaseLocation.Name)'"

4.1. Cmdlets 23

powerLoad (bcpToolkit)

All Cmdlets are supporting the Vault BCP Versions from 2021 to 2024.

Feedback for long running operations

Long running cmdlets are able to provide the user with feedback about the current progress.
Depending on the used PowerShell Host a progress bar gets displayed in GUI applications, showing the status of the
running command.

Name Description
Open-BcpPackage Opens the specified BCP package.
Export-BcpPackage Exports the opened BCP package to the specified directory.
Close-BcpPackage Closes an open BCP package.

4.2 .NET Library

4.2.1 BcpServiceBuilder Class

A factory that creates the BcpService with the relevant settings.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

Inheritance Hierarchy

System.Object
bcpDevKit.IBcpServiceBuilder
bcpDevKit.BcpServiceBuilder

Syntax

public class BcpServiceBuilder : IBcpServiceBuilder

Properties

Type Name Description
BcpVer-

sion
Version Gets or sets the vault version for which you want to create a BCP package. The default

version is BcpVersion._2024.
Directo-

ryInfo
PackageDi-
rectory

Gets or sets the output folder where it will create the BCP package.

24 Chapter 4. Code Reference

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo?redirectedfrom=MSDN&view=netframework-4.7.2

powerLoad (bcpToolkit)

Methods

Type Name Description
void SetPackageLocation(string packageLoca-

tion)
Assigns the specified path to the PackageDirectory.

IBcpSer-
vice

Build() Creates a new IBcpService with the relevant settings.

Remarks

The PackageDirectory is set by default to the TEMP directory on your computer. More details on its determination can
be found here.
SetPackageLocation throws an exception of type DirectoryNotFoundException when an invalid path is passed to the
function.

Examples

Create a new BCP package and add files

using bcpDevKit; using bcpDevKit.Entities;

class Program
{

static void Main(string[] args)
{

var bcpSvcBuilder = new BcpServiceBuilder {Version = BcpVersion._2024};
bcpSvcBuilder.SetPackageLocation(@"C:\Temp\Package1");
var bcpSvc = bcpSvcBuilder.Build();

var catchAssembly = bcpSvc.FileService.AddFileWithIteration("$/Designs/
→˓Catch Assembly.iam", @"C:\Catch Assembly.iam");

bcpSvc.Flush();
}

}

4.2.2 BcpVersion Enumeration

Specifies the vault version of the BCP package.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

4.2. .NET Library 25

https://docs.microsoft.com/en-us/dotnet/api/system.io.path.gettemppath?redirectedfrom=MSDN&view=netframework-4.7.2&tabs=windows

powerLoad (bcpToolkit)

Syntax

public enum BcpVersion

Members

Member name Description
_2024 Vault 2024 Server
_2023 Vault 2023 Server
_2022 Vault 2022 Server
_2021 Vault 2021 Server

4.2.3 EntitiesTable Class

FileIteration Class

Namespace: bcpDevKit.Entities.Vault
Assembly: bcpDevKit.dll

Syntax

public class FileIteration

Properties

Type Name Description
FileRevision Revision Parent Revision
string Uid

string Comment

string Modified Use SetModifiedDate(DateTime dt) to set this value.
string LocalPath

string Id

string ContentSource

CreatedObject Created

StateObject State Use Setstate(string definition, string name) to set state.
List<UDPObject> UDp

List<AssociationObject> Associations

26 Chapter 4. Code Reference

https://learn.microsoft.com/en-us/dotnet/api/System.DateTime?view=netframework-4.7

powerLoad (bcpToolkit)

Methods

Type Name Description
void SetModifiedDate(DateTime dt) Sets correctly formatted

modified date.
void Setstate(string definition, string name)

UDPObject AddProperty(string name, string value)

Associa-
tionObject

AddAssociation(FileIteration childFileVersion, AssocType type)

Associa-
tionObject

AddAssociation(FileIteration childFileVersion, AssocType type,
bool bForeignRef, int refId)

List<FileIteration>GetParentDesignDocuments()

FileObject GetFile()

FileIterationRef Class

Namespace: bcpDevKit.Entities.Vault
Assembly: bcpDevKit.dll

Syntax

public class FileIterationRef

Properties

Type Name Description
FileRevision Revision Parent Revision
string Id

long Checksum Vault file checksum
string CreateDate Vault file create date

Remarks

Both Checksum and CreateDate (date and time including milliseconds) must match a file in Vault.

4.2. .NET Library 27

https://learn.microsoft.com/en-us/dotnet/api/System.DateTime?view=netframework-4.7

powerLoad (bcpToolkit)

FileObject Class

Namespace: bcpDevKit.Entities.Vault
Assembly: bcpDevKit.dll

Syntax

public class FileObject

Properties

Type Name Description
FolderObject Folder Parent Folder
string Name

string Hidden Use SetFileHidden(bool hidden) to set this value.
string Classification Use SetFileClassification(FileClassification fileClass) to set this

value.
string Category

ACLObject AClObjects

List<FileRevision> Revisions

FileTypeEnum FileType Use SetFileType() to set this value automatically.
Nul-

lable<ACLBehavior>
AclBehavior

ACLBehavior AclBehaviorSerial-
ized

FileRevision LatestRevision Gets latest revision.
FileIteration LatestIteration Get latest iteration of latest revision.
FileIterationRef LatestIterationRef Get latest iterationref of latest revision.

28 Chapter 4. Code Reference

powerLoad (bcpToolkit)

Methods

Type Name Description
void SetFileHidden(bool hidden)

void SetFileClassification(FileClassification file-
Class)

void SetAsPreview(bool preview) When true, sets Hidden to true and Classification
to FileClassification.DesignVisualization.

FileClas-
sification

GetFileClassification()

void SetFileType() Sets FileType Property depending on file ending.
FileRevi-

sion
AddRevisionWithIteration(string fileLocation,
string label = “”)

Creates and returns a new FileRevision with a
FileIteration

FileRevi-
sion

AddRevisionWithIterationRef(long checksum,
DateTime createDate, string label = “”)

Creates and returns a new FileRevision with a
FileIterationRef

ACLOb-
ject

AddAcl()

Folder-
Object

GetFolder() Get parent Folder.

void OrderRevisions() Orders revisions by their label.
bool ShouldSerializeAclBehaviorSerialized() Returns true if ACLBehaviour is not null.

FileRevision Class

Namespace: bcpDevKit.Entities.Vault
Assembly: bcpDevKit.dll

Syntax

public class FileRevision

Properties

Type Name Description
FileObject File Parent File
string Definition Use SetRevisionDefinition(string revDefinition, string revLabel) to set this

value.
string Label Used for ordering.
List<FileIteration> Iterations

List<FileIterationRef > Itera-
tionRefs

4.2. .NET Library 29

https://learn.microsoft.com/en-us/dotnet/api/System.DateTime?view=netframework-4.7

powerLoad (bcpToolkit)

Methods

Type Name Description
FileIteration AddIteration(string fileLocation) Adds and returns an iteration
FileIterationRef AddIterationRef(long checksum, DateTime createDate) Adds and returns an iterationref
RevDefObject SetRevisionDefinition(string revDefinition, string revLabel)

FolderObject Class

Namespace: bcpDevKit.Entities.Vault
Assembly: bcpDevKit.dll

Syntax

public class FolderObject

Properties

Type Name Description
FolderObject ParentFolder Gives direct access to the parent folder of the current folder.
string StandardFolderCat-

egory
Gets or sets the standard folder category.

string Name Gets or sets the name of the current folder.
string Category Gets or sets the category of the current folder.
string Id Gets or sets the id of the current folder.
string IsLibraryStr Gets or sets whether the current folder is a library or not. (boolean value

as string)
CreatedObject Created Gets or sets information about the creation of the current folder like the

user or the date.
StateObject State Gets or sets information about the state of the current folder.
List<UDPObject> UDP Gets a list of properties about the children folders of the current folder.
List<FolderObject>FolderObjects Gets a list of all children folders of the current folder.
List<FileObject> FileObjects Gets a list of all files in the current folder.
List<LinkObject> Link Gets a list of all links of the current folder.

30 Chapter 4. Code Reference

https://learn.microsoft.com/en-us/dotnet/api/System.DateTime?view=netframework-4.7

powerLoad (bcpToolkit)

Methods

Type Name Description
Folder-
Ob-
ject

AddFolder(string folderName) Takes a folder name to create and add a new child folder to the
current folder (if it is not already a child).

Folder-
Ob-
ject

AddFolder(FolderObject folder) Takes a folder and add it to the children of the current folder, or
do nothing if its already added.

Folder-
Ob-
ject

GetFolder(string folderName) Takes a folder name and return a the specified child folder.

FileOb-
ject

AddFileWithIteration(string target-
FileName, string sourceFileName)

Takes a target file name and a source file name, create a file and
add it to the current folder. This file will already contain a default
iteration.

FileOb-
ject

AddFileWithIterationRef(string
targetFileName, long checksum,
DateTime createDate)

Takes a target file name, a source file name and a creation date
and add it to the current folder. This file will already contain a
default iteration ref.

FileOb-
ject

GetFile(string fileName) Takes a file name and return the specified file if it is located inside
the current folder.

UD-
POb-
ject

AddProperty(string name, string
value)

Takes a name and a value and add it to the properties of the cur-
rent folder.

void Setstate(string definition, string name) Takes a definition and a name and sets the state of the current
folder.

LinkOb-
ject

AddLink(string id) Takes an id, create a link and adds it to the current folder.

void SetLibrary(bool library) Takes a boolean value and determine, whether the current folder
is a library or not.

bool IsLibrary() Returns whether the current folder is a library.
FileOb-
ject

AddFile(FileObject file) Takes a file and add it to the child files of the current folder.

GroupObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

4.2. .NET Library 31

https://learn.microsoft.com/en-us/dotnet/api/System.DateTime?view=netframework-4.7

powerLoad (bcpToolkit)

Inheritance Hierarchy

System.Object
bcpDevKit.Configuration.SecurityPrincipal
bcpDevKit.Entities.Configuration.GroupObject

Syntax

public class GroupObject : SecurityPrincipal

Properties

Type Name Description
string Email Gets or sets an email address for the group.

InGroupObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

Syntax

public class InGroupObject

Properties

Type Name Description
string Name Gets or sets the name of the assigned group.

Remarks

Name is the ‘Name’ of the linked GroupObject.

32 Chapter 4. Code Reference

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerLoad (bcpToolkit)

InRoleObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

Syntax

public class InRoleObject

Properties

Type Name Description
string Name Gets or sets the name of the assigned role.

Remarks

Name is the ‘Name’ of the linked RoleObject.

PermissionObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

Syntax

public class PermissionObject

Properties

Type Name Description
string Name Gets or sets the name of the permission.

RoleObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

4.2. .NET Library 33

powerLoad (bcpToolkit)

Syntax

public class RoleObject

Properties

Type Name Description
string Name Gets or sets the name of the role.
string Name Gets or sets the role description.
IEnumerable<Permission> Name Gets all the roles permissions.

Methods

Type Name Description
Permission Name Creates and adds a new permission to the role if no one with the specified name exists.
Permission Name Retrieves the permission with the specified name if exists.

Remarks

Examples

Assign user to specific role and add permissions:

var security = bcpService.EntitiesTable.Vault.Security;
var user = security.AddUser("Kim");
user.AddRole("Document Manager (Level 1)");

var role = security.GetRole("Document Manager (Level 1)") role.AddPermission(
→˓"FileChangeCategory");
role.AddPermission("FileChangeRevision");

SecurityObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

34 Chapter 4. Code Reference

powerLoad (bcpToolkit)

Syntax

public abstract class SecurityObject

Properties

Type Name Description
IEnumerable<UserObject> Users Gets all the configured users.
IEnumerable<GroupObject> Groups Gets all the configured groups.
IEnumerable<RoleObject> Roles Gets all the configured roles (only working for Vault 2019 and above).

Methods

Type Name Description
UserObject AddUser(string userName) Creates a new user if no one with the specified name exists.
UserObject GetUser(string userName) Retrieves the user with the specified name if exists.
GroupObject AddGroup(string groupName) Creates a new group if no one with the specified name exists.
GroupObject GetGroup(string groupName) Retrieves the group with the specified name if exists.
RoleObject AddRole(string roleName) Creates a new role if no one with the specified name exists.
RoleObject GetRole(string roleName) Retrieves the role with the specified name if exists.
void RemoveRole(string roleName Removes the role if one with the specified name exists.

Examples

Disable the export of all configuration entities

var security = bcpService.EntitiesTable.Vault.Security;
var user = security.AddUser("Angela");

SecurityPrincipal Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

Syntax

public abstract class SecurityPrincipal

4.2. .NET Library 35

powerLoad (bcpToolkit)

Properties

Type Name Description
string Name Gets or sets the entity name.
bool Active Gets or sets whether the user is active or inactive. Default is true.

SecurityPrinci-
pal.VaultAccess

Access Possible Values: - SecurityPrincipal.VaultAccess.NoVaults- Se-
curityPrincipal.VaultAccess.AllVaults (Default)- SecurityPrinci-
pal.VaultAccess.ThisVault

SecurityPrinci-
pal.VaultAuthentication

Au-
thenti-
cation

Possible Values: - SecurityPrincipal.VaultAuthentication.Vault (Default) -
SecurityPrincipal.VaultAuthentication.Windows

IEnumer-
able<InRoleObject<inroleobject>>

In-
RoleOb-
ject

Gets all the assigned roles.

IEnumer-
able<InGroupObject<ingroupobject>>

In-
GroupOb-
ject

Gets all the assigned groups.

Methods

Type Name Description
InRoleObject AddRole(string roleName) Creates and adds a new role if no one with the specified name

exists.
InGroupOb-

ject
AddGroup(string group-
Name)

Creates and adds a new group if no one with the specified name
exists.

UserObject Class

Namespace: bcpDevKit.Entities.Configuration
Assembly: bcpDevKit.dll

36 Chapter 4. Code Reference

powerLoad (bcpToolkit)

Inheritance Hierarchy

System.Object
bcpDevKit.Configuration.SecurityPrincipal
bcpDevKit.Entities.Configuration.UserObject

Syntax

public class UserObject : SecurityPrincipal

Properties

Type Name Description
string FirstName Gets or sets the FirstName.
string LastName Gets or sets the LastName.
string Password Gets or sets the Password.
string Email Gets or sets the Email address.

Examples

Assign user to group:

var security = bcpService.EntitiesTable.Vault.Security;
var user = security.AddUser("Trump");
var group = secutity.AddGroup("Presidents");

user.AddGroup(group.Name);

Grants direct access to the BCP entities.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

Syntax

public class EntitiesTable

Properties

Type Name Description
Vault Vault Provides access to default Vault entities.
Itemswrapper Itemswrapper Provides access to Item entities.
BOMwrapper BOMwrapper Provides access to BOM entities.
CustomObjectWrapper CustomObjectWrapper Provides access to CustomObject entities.
UOMwrapper UOMwrapper Provides access to UOM entities.

4.2. .NET Library 37

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

powerLoad (bcpToolkit)

Remarks

For more details about how this classes are structered, please give a look to the xsd files coming with the vaultBCP
installation.

Examples

Accessing CustomObjectWrapper via EntitiesTable:

var customObjects = bcpService.EntitiesTable.CustomObjectWrapper;
var definition = customObjects .AddCustomObjectDefinition("Dragonball", "Dragonballs");
definition.SetIcon(@".\Dragon-Ball-icon.ico");

4.2.4 ExportSettings Class

Provides settings for the creation of typical Vault settings that will be created in the package.

Namespace: bcpDevKit.Entities
Assembly: bcpDevKit.dll

Syntax

public class ExportSettings

Properties

Type Name Description
bool CategoryDefinition-

sExport
Gets or sets whether category definitions will be exported or not.

bool PropertyDefinition-
sExport

Gets or sets whether property definitions will be exported or not.

bool LifecycleDefinition-
sExport

Gets or sets whether lifecycle definitions and states will be exported or not.

bool RevisionDefinition-
sExport

Gets or sets whether revision definitions and revision sequences will be ex-
ported or not.

bool UsersExport Gets or sets whether users will be exported or not.
bool GroupsExport Gets or sets whether groups will be exported or not.
bool RolesExport Gets or sets whether roles will be exported or not.

BcpVer-
sion

PackageVersion Gets the vault version for which the BCP package is created.

38 Chapter 4. Code Reference

powerLoad (bcpToolkit)

Methods

Type Name Description
void DisableConfigurationExport() Disables the export for all the configuration entities.

Remarks

By default, all the configuration entities will be exported to the vault package.
In many situations the targeting Vault is already configured correctly, therefore the export of the different configuration
entities can be disabled by setting the intended property to false.

If you set e.g. the CreateUser of a file to „Hans Peter“, the API will create automatically the User definition in the
vault package, and the user will be later imported into Vault.
To disable this behaviour, set the property ‘UsersExport’ to false.

Examples

Disable the export of all configuration entities

bcpService.Settings.DisableConfigurationExport();

4.2.5 IBcpService Interface

Provides all the functionality to create a BCP package.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

Syntax

public interface IBcpService

Properties

Type Name Description
Entiti-

esTable
Entiti-
esTable

Gives direct access to the entities layer, for direct manipulation of the BCP entities.

FileSer-
vice

FileSer-
vice

Contains functionality to add, search and manipulate files and folders in your package.

ItemSer-
vice

ItemSer-
vice

Provides functionality to easily add, search and manipulate items and BOMs in your
package and create links between Items and Files in the complex vault-based way.

Custo-
mObject-
Service

Custo-
mObject-
Service

Provides functionality to easily add, search and manipulate custom objects (e.g. Per-
sons or Groups) and its definitions in your package.

ExportSet-
tings

Settings Here you can do export specific settings (e.g. if you want to not export Users or Prop-
ertyDefinitions).

4.2. .NET Library 39

powerLoad (bcpToolkit)

Methods

Type Name Description
void Flush() This function will take all the data that you have created in your package and write it to the filesys-

tem.

Remarks

IBcpService grants access to the service layer, which is built on top of the entities layer. The service layer contains
functionality for creating a BCP package, without having to understand the entities layer in detail.

If you are more experienced and familiar with the BCP entities you can access the entities layer directly via the Entiti-
esTable and manipulate the objects to suite your needs.

After calling the Flush() method, you can look in the PackageDirectory where you should find all the XML files created
from this function. It is also possible to flush multiple times, i.e. if you have a long running process and you want to
flush in specific time intervals to not lose data if your process crashes.

4.2.6 ICustomObjectService Interface

Provides functionality to add, search and manipulate custom objects and their definition Syntax.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

Syntax

public interface ICustomObjectService

Methods

Type Name Description
Cus-

to-
mOb-
ject

AddCustomOb-
ject(string defini-
tionName, string name)

Adds custom entities to the package and creates their definitions if required.
definitionName is the singular name of the custom object (e.g. Person). Name
should be unique.

Cus-
to-
mOb-
ject

GetCustomObject(string
definitionName, string
name)

Returns an entity of the specified definition if it exists.

40 Chapter 4. Code Reference

powerLoad (bcpToolkit)

Remarks

AddCustomObject handles the creation of the custom object definition and of the custom object itself. It handles the
situation when the definition has to be created in the package or when an entity with the same name is already there.

Examples

Adds a CustomObject “Dragonball”

var definition = bcpService.EntitiesTable.CustomObjectWrapper.AddCustomObjectDefinition(
→˓"Dragonball", "Dragonballs");
definition.SetIcon(@".\Dragon-Ball-icon.ico");
var customObject = bcpService.CustomObjectService.AddCustomObject("Dragonball", "4");

4.2.7 IFileService Interface

Contains functionality to add, search and manipulate files and folders in your package.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

Syntax

public interface IFileService

4.2. .NET Library 41

powerLoad (bcpToolkit)

Methods

Type Name Description
RootO-
bject

GetRootFolder() Returns the Vault root folder.

Folder-
Ob-
ject

AddFolder(string folder-
Name)

Creates the passed folder structure. folderName is a valid vault folder path.

FileOb-
ject

AddFileWithItera-
tion(string targetFile-
Name, string source-
FileName, bool isLi-
brary=false)

Creates the passed folder structure and file. targetFileName is the path to the
file destination, sourceFileName is the path to the sourceFile, if isLibrary is
true, the file gets handled as content center file.

FileOb-
ject

AddFileWithItera-
tionRef(string targetFile-
Name, long checksum,
DateTime createDate,
bool isLibrary=false)

Creates folder structure and a file with an IterationRef referencing a file that
already exists in the Vault. targetFileName is the path to the file destination,
checksum is the checksum of the file in Vault, createDate is the creation date
of the file in Vault (requires milliseconds), if isLibrary is true, the file gets
handled as content center file.

IEnu-
mer-
able<FileObject>

SearchFilesBy-
Name(FolderObject
rootFolderOfSearch,
string fileName, bool
searchRecursive=true)

Looks for files by their name in a specific folder and its subdirectories. root-
FolderOfSearch is the first folder where the search is performed, fileName is
the name the function searches for.

FileOb-
ject

SearchFileByLoca-
tion(string fileLocation)

This function searches for a specific file in the export package if fileLocation
exists.

Folder-
Ob-
ject

SearchFolderBy-
Path(string folderPath)

Searches the export package for a specific folder if folderPath exists.

Remarks

The functions AddFileWithIteration and AddFileWithIterationRef can handle situations where a file or folder
already exists. If a library file is added to a folder that is not marked as „Library“, the folder will not be marked
as a library. SetLibrary(true) can by used to mark the folder as a library. Only if the folder has to be created
automatically or is already a library, the file will be added as a content center.

Examples

Search Files by Name

var searchRecursive = true;
var foundFiles = bcpService.FileService.SearchFilesByName(GetMyFolder(), "Pad Lock.iam",␣
→˓searchRecursive);

42 Chapter 4. Code Reference

https://learn.microsoft.com/en-us/dotnet/api/System.DateTime?view=netframework-4.7

powerLoad (bcpToolkit)

4.2.8 IItemService Interface

Contains functionality to deal with items and BOM.

Namespace: bcpDevKit
Assembly: bcpDevKit.dll

Syntax

public interface IItemService

Methods

Type Name Description
Item-

Master
AddItem(string itemNumber, string
cat, string titel, string desc)

Adds an Item to the package. The item number will be an unique
identifier in vault and it should be unique, for instance “100001”.

Item-
Master

GetItem(string itemNumber) Returns the item, which has the passed itemNumber if it exists.

BOM-
Compo-
nent

AddFileLinkToItem(ItemIteration
itemVersion, FileIteration fileVer-
sion)

Links a file version to a specific item version.

Remarks

AddFileLinkToItem ensures that all files are correctly linked to the item. It handles if the link should be primary,
secondary or tertiary.

If the file is a content center file, a StandardComponent link will be created. If the file has design files, they will be
linked as tertiary links to the item. Files marked as ConfigurationFactory will only be attached to the item.

You can get the latest iteration of an item/file with itemMaster.LatestIteration or file.LatestIteration.

Examples

You have to set the creation date otherwise, the Vault client brings the error message “1417 GetBOMFailed-
NothingEffective” when accessing that item.

var item = bcpService.ItemService.AddItem("9992", "Document", "Title 9992", "Desc 9992");
item.LatestIteration.SetCreateDateFormatted(DateTime.Today);

4.2. .NET Library 43

powerLoad (bcpToolkit)

The bcpDevKit .NET library contains a set of classes, interfaces, and value types that makes it very easy to create your
own BCP-package which can be imported into Vault.

The libary supports:

• .Net Framework 4.7 or higher.

4.2.9 Classes

Class Description
BcpService-

Builder
This factory creates the BcpService with the relevant settings for you.

Export-Settings This class provides settings for the creation of typically Vault settings that will be created in the
package.

Entities-Table Grants direct access to the BCP entities.

4.2.10 Interfaces

Interface Description
IBcpService Provides all the functionality to create a BCP package.

ICustomObjectSer-
vice

Provides functionality to add, search and manipulate custom objects and their definition
syntax.

IFileService Contains functionality to add, search and manipulate files and folders in your package.
IItemService Contains functionality to deal with items and BOM.

4.2.11 Enumerations

Enumeration Description
BcpVersion Specifies the Vault version of the BCP package.

44 Chapter 4. Code Reference

CHAPTER

FIVE

LOGGING

powerLoad (bcpToolkit) tools use Apache log4net as core logging library, and additionally PostSharp Diagnostics for
extended Debug logging.

By default, all the logs are stored in a logfile located in ‘C:\Users\{USER}\AppData\Local\coolOrange\bcpToolkit\Logs\bcpToolkit.log’
and it contains Infos, Warnings and Errors.
Perhaps you can find backups of previous logfiles in this directory.

The log4net settings file is located in C:\Program Files\coolOrange\bcpToolkit\bcpToolkit.log4net.
Further information about log4Net Configurations can be found here.

You can change the logging behaviour of:

• bcpViewer, it’s engine, Window and database

• the PowerShell IDE

• projects using the .NET Library

5.1 When to change the logging behavior?

When you have issues or when you want to get a more detailed knowledge about what went wrong, you can increase
the loglevel.

Note: When changing the loglevel to DEBUG PostSharp Diagnostics will be enabled and will log all the function
calls into the log files. This could cause performance issues

Additionally you can change the logfile location or integrate the logging mechanism into your administrative environ-
ment by using build in EventLogMessages etc.

Following section is used to control the logging behaviour for all tools:

63 <root>
64 ...
65 </root>

For the moment only following LogAppender is used:

45

https://logging.apache.org/log4net/
http://doc.postsharp.net/5.0/logging
https://logging.apache.org/log4net/release/manual/configuration.html
https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/
http://doc.postsharp.net/5.0/logging

powerLoad (bcpToolkit)

5.2 LogFile

This is the main LogAppender used in all the loggers. If you want to change the logging level in the logfile, please visit
following appender:

3 <appender name="FileAppender" type="log4net.Appender.RollingFileAppender">

In the line

6 <param name="File" value="${LOCALAPPDATA}\coolOrange\bcpToolkit\Logs\bcpToolkit.log" />

you can configure the outputpath and name of the logfile.

Since this appender has no configured LevelRangeFilter, its loggingLevel has to be configured on the loggers.
In the lines

63 <root>
64 <level value="INFO" />
65 <appender-ref ref="FileAppender" />
66 </root>

you can configure the logging level. You could set the level to “DEBUG”, then all the levels between the range Debug
and Fatal will be logged.

5.3 bcpViewer

Following section is used to control the logging behaviour for the bcpViewer.exe and it’s engine logic:

68 <logger name="bcpViewer"></logger>

In order to configure sub-functionalities like the UserInterface, the following configuration section could be used:

70 <logger name="bcpViewer.UI"></logger>

This is the place where you want to increase the logging level when you need more detailed informations about whats
happening in the bcpViewer Database.

72 <logger name="bcpViewer.Database"></logger>

For all this sections, only the LogFile appender is used.

5.4 PowerShell IDE

When using bcpToolkit cmdlets in PowerShell environments, logs are written to the PowerShell Console Window.
Following section is used to control the logging behaviour for the Cmdlets of this module:

80 <logger name="bcpToolkit.Cmdlets"> ... </logger>

In order to customize the logging level in the console window, visit following appender that is used in addition to the
LogFile.

46 Chapter 5. Logging

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/

powerLoad (bcpToolkit)

5.4.1 ColoredConsoleAppender

ColoredConsoleAppenders are working for PowerShell IDE’s that support console windows.

23 <appender name="ColoredConsoleAppender" type="log4net.Appender.ColoredConsoleAppender">

In the lines

50 <filter type="log4net.Filter.LevelRangeFilter">
51 <levelMin value="INFO" />
52 <levelMax value="FATAL" />
53 </filter>

you can configure the required logging level. You could set the minimal filter level to “DEBUG”, than all the levels
between the range Debug and Fatal will be logged.

We are using a ColoredConsoleAppender, therefore you could also change the colors of the messages, depending on
their log level:

25 <mapping>
26 <level value="DEBUG" />
27 <backColor value="White" />
28 </mapping>
29 <mapping>
30 <level value="INFO" />
31 <backColor value="Green" />
32 </mapping>
33 <mapping>
34 <level value="WARN" />
35 <backColor value="Yellow" />
36 </mapping>
37 <mapping>
38 <level value="ERROR" />
39 <backColor value="Red" />
40 </mapping>
41 <mapping>
42 <level value="FATAL" />
43 <backColor value="Red, HighIntensity" />
44 </mapping>

Troubleshooting

The PowerShell ISE currently does not support console logs at all.

In addition to the earlier described logging section ‘bcpToolkit.Cmdlets’, following section can be adjusted for Power-
Shell environments as well, since they make use of the .NET library internally.

5.4. PowerShell IDE 47

https://doc.coolorange.com/projects/powerjobsprocessor/en/stable/logging/log_level/

powerLoad (bcpToolkit)

5.5 Projects using .NET Library

When using the bcpDevKit .NET library in custom projects, logging can be controlled in following section:

75 <logger name="bcpDevKit"> ... </logger>

In addition to the LogFile, all projects that support console windows will make use of the configuration for the Col-
oredConsoleAppender too.
For debugging purpose, following additional appender can be adjusted in order to meet your projects requirements:

5.5.1 OutputDebugStringAppender

The OutputDebugStringAppender writes to the OutputDebugString system.

56 <appender name="OutputDebugStringAppender" type="log4net.Appender.
→˓OutputDebugStringAppender" >

57 <layout type="log4net.Layout.PatternLayout">
58 <conversionPattern value="%date [%thread] %-5level %logger - %message

→˓%newline" />
59 </layout>
60 </appender>

When developing new projects this can be useful because the logs are directly shown in the Visual Studio Output
Window.

48 Chapter 5. Logging

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/how-to-debug-in-mixed-mode?view=vs-2017
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/how-to-debug-in-mixed-mode?view=vs-2017

CHAPTER

SIX

CHANGE LOGS

6.1 powerLoad (bcpToolkit) v24

6.1.1 v24.0.4

29-09-2023

General

• Updated Licensing to version: 18.3.1

• End User License Agreement (EULA) has changed

• Updated minimum required .NET Framework version to 4.7

• Removed support for VaultBCP 2017, 2018, 2019 and 2020

Features

• Added support for VaultBCP 2021, 2022, 2023 and 2024

• Added support for IterationRef s:

– FileService: New method AddFileWithIterationRef

– FileObject: New method AddFileWithIterationRef

– FileRevision: New method AddIterationRef

– FolderObject: New method AddFileWithIterationRef

Fixed

• FileIteration not being added to FileRevision when an Iteration with the identical LocalPath already exists

Breaking Changes

Updated BcpVersion-enum
Removed BcpVersion Enum values:

• Removed BcpVersion._2020

• Removed BcpVersion._2019

• Removed BcpVersion._2018

• Removed BcpVersion._2017

Renamed IFileService, FolderObject and FileObject methods

49

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-3-1
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net47

powerLoad (bcpToolkit)

• IFileService:

– Renamed AddFile to AddFileWithIteration

• FileObject

– Renamed AddRevision to AddRevisionWithIteration

• FolderObject

– Renamed AddFile to AddFileWithIteration

6.2 powerLoad (bcpToolkit) v20

6.2.1 v20.0.5

20-01-2021

General

• Updated Licensing to version: 18.1.22

• End User License Agreement (EULA) has changed

• Added bcpToolkit Information shortcut to startmenu

• Removed bcpToolkit Help shortcut from startmenu as it can be accessed via bcpToolkit Information shortcut

• Removed Splashscreen

• Copyright notices have changed

Fixed

• Compatibility-Issue with other coolOrange products using an older Logging version

6.2.2 v20.0.2

05-11-2019

General

• Updated Licensing to version: 18.0.10

6.2.3 v20.0.1

10-07-2019

Features

• Added support for VaultBCP 2020

• Added support for Stand-Alone Licensing

General

• End User License Agreement (EULA) has changed

• Updated Licensing to version: 18.0.7

• Removed support for VaultBCP 2016

50 Chapter 6. Change logs

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-1-22
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-0-10
https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v18/#v18-0-7

powerLoad (bcpToolkit)

Breaking Changes

Updated BcpVersion-enum

Removed BcpVersion-Enum value: BcpVersion._2016

6.3 bcpToolkit v19

6.3.1 v19.0.5

17-07-2018

Features

• Added support for VaultBCP 2019

• .NET Library bcpDevKit gets installed in the GAC

• Added PowerShell module with new Cmdlets: Open-BcpPackage, Export-BcpPackage and Close-BcpPackage

General

• Renamed bcpChecker to bcpViewer

• Standardized Logging same as for other products

• added PostSharp Diagnostics for extended Debug logging (replaces Log4PostSharp in bcpDevKit)

• Changed registry keys to “HKLM\Software\coolOrange s.r.l.\bcpViewer”: Location and Version

• Removed support for VaultBCP 2012, 2013, 2014, 2015 & 2015R2

• Signed bcpDevKit library with a Strong Name

• Extended SecurityObject in bcpDevKit with new Roles functionality

• Removed ‘Save Package’ functionality from bcpViewer (use Export-BcpPackage instead)

Fixed

• removed underscore from available “BCP Versions” in bcpViewer “Open Package” dialog

• BomComponent.AddInstance method in bcpDevKit automatically assigns ‘FileIteration’ (and ‘FileIterationId’)
to the file associated with the new childComponent

• performance improvements (approximately 10%) with opening large BCP packages via Open-BcpPackage and
bcpViewer

Breaking Changes

All projects that are using bcpDevKit have to be recompiled using the strong named version from GAC.
References to bcpDevKit.Entities.dll should be removed, since all entity types got moved into bcpDevKit.dll

Updated BcpVersion-enum

Removed BcpVersion-Enum values: ‘BcpVersion._2012’, ‘BcpVersion._2013’, ‘BcpVersion._2014’, ‘BcpVer-
sion._2015’ and ‘BcpVersion._2015R2’.
Moved from namespace ‘bcpDevKit.Entities’ to ‘bcpDevKit’

Added Enumerations for Access and Authentication

6.3. bcpToolkit v19 51

http://doc.postsharp.net/5.0/logging

powerLoad (bcpToolkit)

Changed type of ‘UserObject.Access’ and ‘GroupObject.Access’ from string to SecurityPrincipal.VaultAccess.
Changed type of ‘UserObject.Authentication’ and ‘GroupObject.Authentication’ from string to SecurityPrinci-
pal.VaultAuthentication.

Renamed FileClassificationEnum to FileClassification

Moved ‘bcpDevKit.Entities.Vault.FileObject.FileClassificationEnum’ to ‘bcpDevKit.Entities.FileClassification’.
Changed types of methods ‘FileObject.FileClassificationEnum FileObject.GetFileClassification()’ and ‘FileOb-
ject.SetFileClassification(FileObject.FileClassificationEnum fileClass)’ to ‘bcpDevKit.Entities.FileClassification’.

Renamed ClassTypEnum to ClassType

Moved ‘bcpDevKit.Entities.Configuration.BehaviorsObject.ClassTypEnum’ to ‘bcpDevKit.Entities.ClassType’.
Changed types of several class-properties and methods in namespace ‘bcpDevKit.Entities.Configuration’ from ‘bcpDe-
vKit.Entities.Configuration.BehaviorsObject.ClassTypEnum’ to ‘bcpDevKit.Entities.ClassType’.

Renamed BOM-types

Renamed following BOM-types in namespace ‘bcpDevKit.Entities.Items’:

• renamed BOMComponent to BomComponent

• renamed BOMComponentItemToComp to BomComponentItemToComp

• renamed ItemsBOMComponentProperty to BomComponentProperty

• renamed instance to BomInstance

Removed Ser_Quantity from BomLink

Removed obsolete property ‘Ser_Quantity’ from BomLink.
Use typed property ‘Quantity’ instead.

Removed SchemeId from BomDetail

Removed obsolete property ‘SchemeId’ from BomDetail.
Use alternative property ‘IsStructured’ instead.

Replaced Get/SetLinkType on BOMComponentItemToComp

Removed methods ‘LinkTypeEnum BOMComponentItemToComp.GetLinkType()’ and ‘BOMComponentItemTo-
Comp.SetLinkType(LinkTypeEnum linkType)’.
Use alternative property ‘BomComponentItemToComp.LinkType’ instead, by using new Enum-values ‘PrimarySub-
component’ or ‘SecondarySubcomponent’.
Moved Enum ‘bcpDevKit.Entities.Items.BOMComponentItemToComp.LinkTypeEnum’ to ‘bcpDe-
vKit.Entities.LinkTypeEnum’

Renamed BomInstanceStructure to BomStructureType

Moved ‘bcpDevKit.Entities.Items.instance.BomInstanceStructure’ to ‘bcpDevKit.Entities.BomStructureType’.
Changed type of ‘instance.Structure’ from ‘instance.BomInstanceStructure’ to ‘bcpDe-
vKit.Entities.BomStructureType’.

Moved Enums from BOMComponent to Entities namespace

Moved following Enums out from type ‘bcpDevKit.Entities.Items.BOMComponent’:
* Instead of ‘BOMComponent.BomComponentType’ use ‘bcpDevKit.Entities.BomComponentType’

• Instead of ‘BOMComponent.BomStructureType’ use ‘bcpDevKit.Entities.BomStructureType’

• Instead of ‘BOMComponent.ContentSource’ use ‘bcpDevKit.Entities.ContentSource’

Moved Enums from BomLink to Entities namespace

• Instead of ‘BomLink.BomLinkType’ use ‘bcpDevKit.Entities.BomLinkType’

52 Chapter 6. Change logs

powerLoad (bcpToolkit)

Moved Enums from AssociationsObject to Entities namespace

• Instead of ‘AssociationObject.AssocType’ use ‘bcpDevKit.Entities.AssocType’

Fixed property namings in following classes

• CategoryAssignObject

• CategoryDefObject

• GroupObject

• InGroupObject

• InRoleObject

• PropertyDefObject

• Attachment

6.4 bcpDevKit v18

6.4.1 v18.0.3

12-03-2018

General

• Added new version of Licensing assemblies

• Increased .NET Framework to v4.5

Fixed

• Some elements in Vault.xml file have ‘d7p1’ namespace attributes (or similar) in certain situations

6.4.2 v18.0.1

08-09-2017

• Official Release

General

• Added support for BCP 2017

• Added support for BCP 2018

Breaking Changes

Replaced Instance.ChildCompId with ChildComponent property (still directly accessible on BomInstanceOld type if
required)
Replaced BomLink.SetInstanceCount with InstanceCount
Replaced BomLink.SetIsCAD with IsCAD
Replaced BomLink.SetUnitSize with UnitSize
Replaced Occurrence.ChildCompId with ChildComponent property (still directly accessible on BomOccurrenceOld
type if required)
Changed type of ItemMaster.ItemMasterID from Integer to string
Changed type of ItemMaster.ItemMasterID from Integer to string

6.4. bcpDevKit v18 53

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v17/#v17-0-2

powerLoad (bcpToolkit)

Changed type of Occurrence.SchemeType to enum BomSchemeType
Changed type of ItemIteration.AddBomLink() to return type BomLink
Renamed CustomObject.Setstate to SetState
Renamed Instance.StructureName to Structure and changed type to enum BomInstanceStructure
Added parameter classification to BehaviorsObject.AddRevisionDef
Added function ItemIteration.AddBomDetail

Fixed

• Function: ItemRevision.SetRevision automatically creates RevisionDefinition with correct AssignmentType

6.5 bcpDevKit v16

6.5.1 v16.0.29

29-08-2016

Fixed

• File revisions do not become ordered automatically. Similiar as for Items, the class File has a new function
OrderRevisions() for automatically ordering the revisions.

6.5.2 v16.0.28

28-06-2016

Features

• Updated Licensing to latest Version.

Fixed

• Issue where bcpDevKit runs in Trial after successful license activation

6.5.3 v16.0.19

02-09-2015

• First release of bcpDevKit 2016

• Introduced new licensing

• supports BCP 2016

• supports BCP 2015 R2

Features

• ExportSettings are able to be changed also after a Flush happened

• UserExport flag in ExportSettings for disabling automatic generation of users

• DisableConfigurationExport function in exportSettings, for disabling export of all configuration object types

Fixed

• Changing ExportSettings like CategoryDefinitionsExport / LifecycleDefinitionsExport was ignored and had no
affect at all

54 Chapter 6. Change logs

https://doc.coolorange.com/projects/licensing/en/18.3/change_logs/license_v16/#v16-0-157

powerLoad (bcpToolkit)

6.6 bcpChecker v18

6.6.1 v18.0.6

12-03-2018

General

• Assemblies coolorange.licensing and coolorange.Utils.UI now gets installed in the GAC

Fixed

• Issue which caused the Dialog to crash when showing properties for Files/Folder/Items

6.6.2 v18.0.4

08-09-2017

• Official Release

General

• Added support for BCP 2017

• Added support for BCP 2018

• Installed “bcpChecker 18.0 Logs” shortcut in start-menu section of bcpChecker

• Moved LogFile to %LOCALAPPDATA%/coolOrange/bcpChecker/Logs in order that Non-Admin users have
write-access to the files.

Fixed

• Issue which caused the Dialog to crash when using the folder browser

• Issue with the Online Help button in the Help menu

6.7 bcpChecker v16

6.7.1 v16.0.25

02-09-2015

• support for BCP 2016

• added latest version of licensing

• Add Activator.exe to Setup

Features

• Add filters for each column

Fixed

• Icons of the General Tab in ItemMaster are not shown correctly

6.6. bcpChecker v18 55

powerLoad (bcpToolkit)

6.8 bcpChecker v15

6.8.1 v15.0.297

10-10-2014

Features

• support for Vault BCP 2015 R2

6.8.2 v15.0.289

17-09-2014

Features

• support for items

• progress bar while exporting, importing or reloading package

• Open-Package and export can be cancelled

• reload database function

• Switch to exclude BomBlobs when importing\exporting bcp package

• better user experience when reading data from database takes too long

• more logging (log4Postsharp)

Fixed

• uses structure is no longer shown

• whereUsed shows dependency when is attached

• opening BCP-packages from network path

• ItemVersion was showing wrong PartNumber

• fixed different errors in 2014 xsd for export

• trial mode behaviour on contentView

• wiki-link was not working

The Data Transfer Utility (aka VaultBCP) allows to import data of any size into Vault in a reliable and complete way.
It allows importing files, items, bill of materials and custom objects, including historical versions, and all the related
links.
powerLoad (bcpToolkit) provides several tools for creating, manipulating and viewing such BCP packages easily, in
order to be ready to import them into Vault!

56 Chapter 6. Change logs

CHAPTER

SEVEN

BCPVIEWER

An import of several thousand files might take some hours and if there are some erroneous configurations in the BCP
package you may figure it out very late.
The bcpViewer lets you preview the BCP package in an UI that looks similar to Vault.
You can expand the folders, see the files in each folder, their properties, links, history, etc.

57

powerLoad (bcpToolkit)

58 Chapter 7. bcpViewer

CHAPTER

EIGHT

.NET LIBRARY

The bcpDevkit is a .Net library which can be used in your C# or VB projects when you need to develop a custom
migration with BCP.
You can start building your BCP-package right away, without having to know the XML format from BCP.
The library creates all the right settings for you and saves you a lot of time and nerves! Documentation, samples and
tutorials will help you getting started with minimal effort.

59

powerLoad (bcpToolkit)

60 Chapter 8. .NET Library

CHAPTER

NINE

CMDLETS

The bcpToolkit module provides commandlets that allow creating scripts for automating the work with BCP packages.
These Cmdlets allow handling large BCP-packages in a very simple, flexible and performant way.

61

	Installation
	Requirements
	Setup
	Install locations
	Updates
	Uninstall

	Activation and Trial limitations
	Trial limitations
	bcpViewer
	.NET library
	Cmdlets

	Activation
	License Shortcut
	bcpViewer Menu
	Command-line

	Licensing Options
	Stand Alone Licensing
	Offline activation

	Getting Started
	Using the Cmdlets
	Start the PowerShell environment
	Open the package
	Export the package
	Close the package

	Using the .NET library
	Using the bcpViewer
	Acceptance test
	Calculate behaviors
	Files existence check
	Open a package
	Check Files
	Check Items
	Check Behaviours
	Good to know

	Creating a sample package
	Preview the package
	Exporting a test package

	Code Reference
	Cmdlets
	Close-BcpPackage
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Export-BcpPackage
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	Open-BcpPackage
	Syntax
	Parameters
	Return type
	Remarks
	Examples

	.NET Library
	BcpServiceBuilder Class
	Inheritance Hierarchy
	Syntax
	Properties
	Methods
	Remarks
	Examples

	BcpVersion Enumeration
	Syntax
	Members

	EntitiesTable Class
	FileIteration Class
	Syntax
	Properties
	Methods

	FileIterationRef Class
	Syntax
	Properties
	Remarks

	FileObject Class
	Syntax
	Properties
	Methods

	FileRevision Class
	Syntax
	Properties
	Methods

	FolderObject Class
	Syntax
	Properties
	Methods

	GroupObject Class
	Inheritance Hierarchy
	Syntax
	Properties

	InGroupObject Class
	Syntax
	Properties
	Remarks

	InRoleObject Class
	Syntax
	Properties
	Remarks

	PermissionObject Class
	Syntax
	Properties

	RoleObject Class
	Syntax
	Properties
	Methods
	Remarks
	Examples

	SecurityObject Class
	Syntax
	Properties
	Methods
	Examples

	SecurityPrincipal Class
	Syntax
	Properties
	Methods

	UserObject Class
	Inheritance Hierarchy
	Syntax
	Properties
	Examples

	Syntax
	Properties
	Remarks
	Examples

	ExportSettings Class
	Syntax
	Properties
	Methods
	Remarks
	Examples

	IBcpService Interface
	Syntax
	Properties
	Methods
	Remarks

	ICustomObjectService Interface
	Syntax
	Methods
	Remarks
	Examples

	IFileService Interface
	Syntax
	Methods
	Remarks
	Examples

	IItemService Interface
	Syntax
	Methods
	Remarks
	Examples

	Classes
	Interfaces
	Enumerations

	Logging
	When to change the logging behavior?
	LogFile
	bcpViewer
	PowerShell IDE
	ColoredConsoleAppender

	Projects using .NET Library
	OutputDebugStringAppender

	Change logs
	powerLoad (bcpToolkit) v24
	v24.0.4

	powerLoad (bcpToolkit) v20
	v20.0.5
	v20.0.2
	v20.0.1

	bcpToolkit v19
	v19.0.5

	bcpDevKit v18
	v18.0.3
	v18.0.1

	bcpDevKit v16
	v16.0.29
	v16.0.28
	v16.0.19

	bcpChecker v18
	v18.0.6
	v18.0.4

	bcpChecker v16
	v16.0.25

	bcpChecker v15
	v15.0.297
	v15.0.289

	bcpViewer
	.NET Library
	Cmdlets

